Danfoss

#### Document Version Number 3.10 Software Version 1.06

### **Table of Contents**

| Chapter 1  | Introduction<br>Getting Started<br>Receiving, Inspection, and Storage<br>Nameplate Information<br>General Technical Data<br>Specifications<br>External Parts and Labels             | 2<br>2<br>3<br>6 |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Chapter 2  | Installation and Wiring<br>Installation Requirements<br>Wiring<br>Main Circuit Standard Wiring Chart<br>Control Terminal Designations (Factory Settings)<br>Safety Precautions<br>1 | 9<br>0<br>1      |
| Chapter 3  | Digital Keypad/Display Operation<br>Digital Keypad/Display Features                                                                                                                 | 6                |
| Chapter 4  | Description of Parameters2                                                                                                                                                          | 0                |
| Chapter 5  | Summary of Parameters6                                                                                                                                                              | 2                |
| Chapter 6  | Troubleshooting and Fault Information6                                                                                                                                              | 9                |
| Appendix A | Dimensions                                                                                                                                                                          | 3                |
| Appendix B | Accessories                                                                                                                                                                         | 5                |
| Appendix C | CE Labeling                                                                                                                                                                         | 7                |
| Appendix D | Serial Communication                                                                                                                                                                | 2                |

### VLT is a registered Danfoss trade mark

Danfoss can accept no responsibility for possible errors in catalogs, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed.

Danfoss

#### Chapter 1

#### Introduction

Congratulations on your purchase of a VLT<sup>®</sup> Adjustable Frequency Drive. The VLT<sup>®</sup> MICRO is a high-performance / low noise general-purpose drive, manufactured using the highest quality components and incorporating the latest micro-processor technology and control algorithms.

The purpose of this chapter is to provide specific yet simple information to unpack, install, and operate the drive. This chapter contains information on the following:

- Getting Started
- Unpacking, Inspection, and Storage
- Nameplate Information
- Identification of Parts

#### **Getting Started**

This manual will help in the installation, parameter setting, troubleshooting, and daily maintenance of the AC drive. To guarantee safe operation of the equipment, read the following safety guidelines before connecting the Adjustable Frequency Drive to AC Power.

National Electrical Codes (NEC®) and local safety codes.



The VLT Adjustable Frequency Drive (AFD) contains dangerous voltages when connected to line voltage. After disconnecting from the line wait at least one minute before touching any electrical components. Also make sure that other voltage inputs have been disconnected, such as external 24 VDC, load-sharing (linkage of DC intermediate circuit), as well as the motor connection for kinetic back-up. Only a competent electrician should carry

out the electrical installation. Improper installation of the motor or the AFD may cause equipment failure, serious injury or death. Follow this manual,

WARNING



WARNING

Electrostatic Precaution; Electrostatic discharge (ESD). Many electronic components are sensitive to static electricity. Voltages so low that they cannot be felt, seen or heard, can reduce the life, affect performance, or completely destroy sensitive electronic components. When performing service, proper ESD equipment should be used to prevent possible damage from occurring.



It is the responsibility of the user or the person installing the AFD to provide proper grounding, as well as motor overload and branch circuit protection according to the National Electrical Code (NEC®) and local codes.

CAUTION



#### Receiving, Transporting, Inspecting, and Storage

This VLT<sup>®</sup> MICRO Adjustable Frequency Drive has gone through rigorous quality control tests at the factory before shipment. After receiving and before transporting the drive, check for the following.

#### Receipt

After receiving the AC drive, inspect the unit to insure it was not damaged during shipment.

#### Transportation

Climatic condition : Class 2K3

#### Inspection

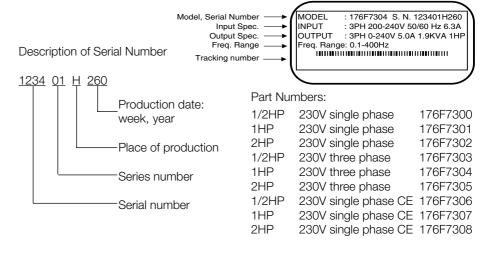
• After unpacking the unit, make sure that the package includes a drive unit and the Instruction Manual.

• Make sure that the part number indicated on the nameplate and packing carton corresponds with the part number of your order.

#### Storage

The AFD should be kept in the shipping carton before installation. In order to retain the warranty coverage, the drive should be stored properly. Some storage recommendations are:

- Store in a clean, dry place
- Store within an ambient temperature range of -20°C to +65°C


• If possible, store in an air-conditioned evironment where the relative humidity is less than 95%, non-condensing.

• Do not store the unit in places where it could be exposed to corrosive gases.

• Do not store the unit on an unstable surface where it could be damaged by falling to the floor.

#### Nameplate Information

#### Example for 1HP 240V AC Adjustable Frequency Drives





#### **General Technical Data**

| AC line supply (L1, L2, L3):     |                             |
|----------------------------------|-----------------------------|
| Supply voltage 200-240 V units   |                             |
| Supply voltage 200-240 V units   |                             |
| Supply frequency                 | 50/60 Hz                    |
| Max. imbalance of supply voltage | ±2% of rated supply voltage |
| Power factor/cos $\phi$          | 0.90/1.0 at rated load      |
| Max short circuit rating         |                             |

#### VLT output data (U, V, W):

| Output voltage                       | 0-100% of supply voltage |
|--------------------------------------|--------------------------|
| Output frequency                     | 0.1 - 400 Hz             |
| Rated motor voltage, 200-240 V units |                          |
| Rated motor frequency                | 50/60 Hz                 |
| Switching on output                  | Protected                |
| Ramp times                           | 0.1-600 sec.             |

#### Torque characteristics:

| Starting torque            | 150% for 1 min. |
|----------------------------|-----------------|
| Acceleration torque        |                 |
| Overload torque, 200-240 V | 150% for 1 min. |

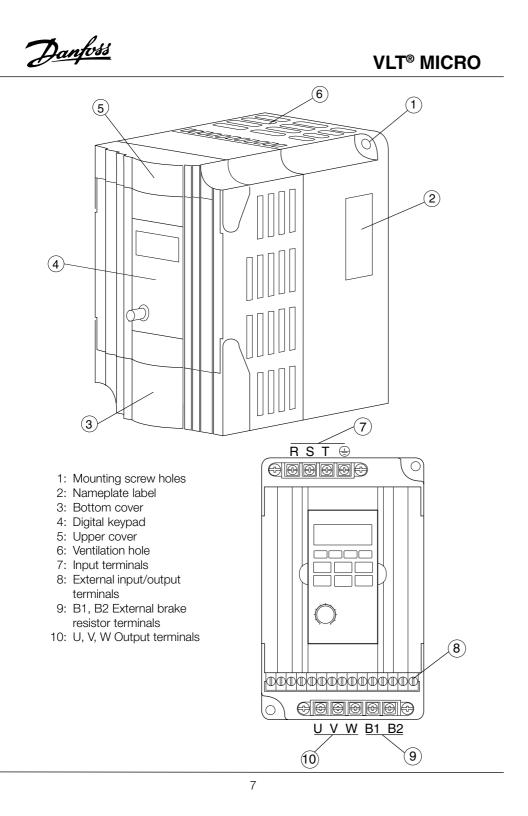
Control card, digital inputs:

| Number of programmable digital inputs |                        |
|---------------------------------------|------------------------|
| Terminal nos                          | M0, M1, M2, M3, M4, M5 |

Danfoss

| Control card, analog inputs:<br>No. of programmable analog inputs (selectable voltage or current)                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input resistance, R approx. 47 k $\Omega$<br>Current range 4-20 mA<br>Input resistance, R approx. 250 $\Omega$<br>Resolution 10 bit + sign<br>Galvanic isolation: All analog inputs are galvanically isolated from the supply voltage. |
| Galvanic isolation: All analog inputs are galvanically isolated from the supply voltage.                                                                                                                                               |
| Control card, 10 VDC supply:<br>Terminal numbers                                                                                                                                                                                       |
| Max. load 10 mA                                                                                                                                                                                                                        |
| Control card, analog outputs:<br>Number of programmable analog outputs                                                                                                                                                                 |
| PHC output<br>Number of programmable photocoupler outputs                                                                                                                                                                              |
| Control card, RS485 serial communication:<br>Terminal numbers RJ-11                                                                                                                                                                    |

Danfoss


| Relay outputs:<br>No. of programmable relay outputs                                          |  |
|----------------------------------------------------------------------------------------------|--|
| Brake resistor terminals:<br>Terminal numbers                                                |  |
| Cable lengths and cross-sections:<br>Use 75°C copper wire minimum<br>Max. motor cable length |  |
| Control characteristics:<br>Frequency range                                                  |  |
| Environment:<br>Enclosure                                                                    |  |

Danfoss

## Specifications AC Line 1Ø and 3Ø, 200 - 240 Volt

| VLT Order Number 1Ø<br>3Ø |                    | 176F7300<br>176F7303 | 176F7301<br>176F7304 | 176F7302<br>176F7305 |
|---------------------------|--------------------|----------------------|----------------------|----------------------|
|                           | 1Ø CE              | 176F7306             | 176F7307             | 176F7308             |
| Output current            |                    |                      |                      |                      |
| continuous                | (200-240) [A]      | 2.5                  | 5.0                  | 7.0                  |
| intermittent              | (200-240) [A]      | 3.7                  | 7.5                  | 10.5                 |
| Output                    |                    |                      |                      |                      |
| continuous                | (200-240) [KVA]    | 1.0                  | 1.9                  | 2.7                  |
| Typical shaft output      | [HP]               | 0.5                  | 1.0                  | 2.0                  |
|                           | [kW]               | 0.4                  | 0.75                 | 1.5                  |
| Max. motor cable s        | ize [AWG]          | 14                   | 14                   | 14                   |
|                           | [mm <sup>2</sup> ] | 2                    | 2                    | 2                    |
| Max. input current        | 1Ø, 200-240 [A]    | 6.3                  | 11.5                 | 15.7                 |
|                           | 3Ø, 200-240 [A]    | 2.9                  | 6.3                  | 8.8                  |
| Max. power cable s        | ize [AWG]          | 14                   | 14                   | 14                   |
|                           | [mm <sup>2</sup> ] | 2                    | 2                    | 2                    |
| Max. pre-fuses 1)         | 1Ø [A]             | 10                   | 20                   | 25                   |
|                           | 3Ø [A]             | 10                   | 20                   | 25                   |
| Enclosure                 |                    |                      | Chassis (IP20)       |                      |
| Weight                    | 1Ø [lbs.]          | 1.75                 | 2.0                  | 2.25                 |
|                           | 3Ø [lbs.]          | 1.75                 | 1.75                 | 2.0                  |

<sup>1)</sup> 200-240 VAC; Bussmann type JJN or exact equivalent



Danfoss

#### Chapter 2

#### Installation and Wiring

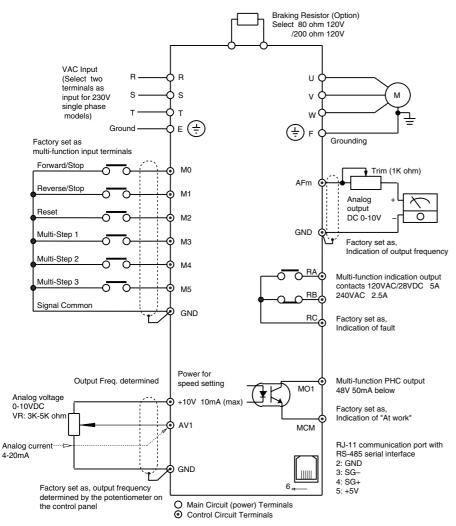
Chapter 2 provides the information needed to properly install and wire the AC motor drive. Make sure that the AC drive is wired according to the instructions contained in this chapter. The instructions should be read and understood before the actual installation begins. This chapter contains the following information:

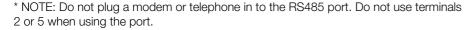
- Installation Requirements
- Wiring

#### **Installation Requirements**

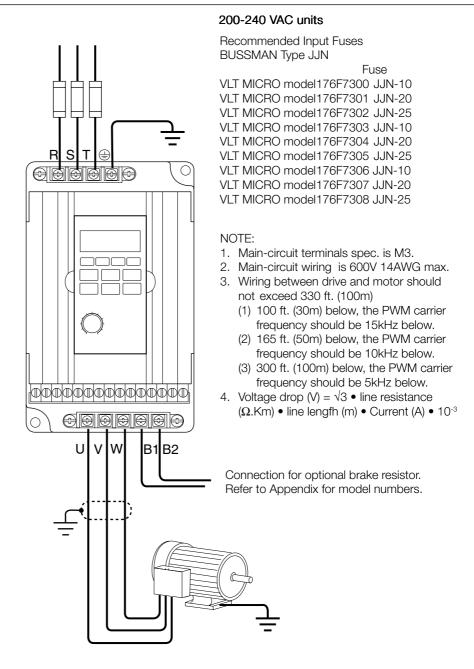
Install the drive vertically to provide proper ventilation. Adequate space is required between the drive and a wall or other equipment. The figure below shows the minimum space needed.




#### The AC motor drive should be installed in an environment that is:

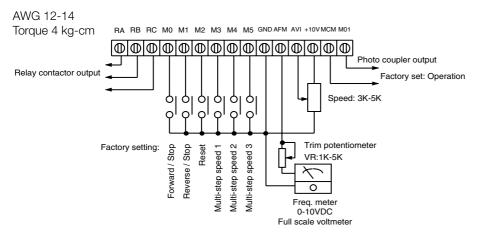

- protected from rain or moisture
- protected from direct sunlight
- protected from corrosive gases or liquids
- free from airborne dust or metallic particles
- free from vibration
- free from magnetic noise
- Climate condition : Class 3K3 (temperature between -10°C to 50°C, Operation above 40°C requires good ventilation to avoid over-heating.)

Danfoss


#### Wiring

There are two wiring systems in an AFD: Main Circuit and Control Circuit. The Main Circuit terminals are located at the top of the drive. Control Circuit terminals are located bottom of drive, Both terminal blocks are covered by the plastic housing. Lift the hinged portion of the housing to gain access to the terminals. Make sure power is removed before making any connections. Connect wires to the terminals according to the diagram below. When no connections are made to the control terminals, the drive is operated by the Digital Keypad/Display.





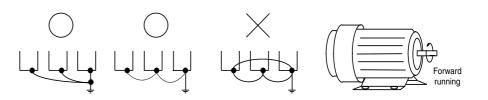

Danfoss



Danfoss

#### **Control Terminal Designations**




| Terminal symbol | Terminal name                  | Remarks                              |
|-----------------|--------------------------------|--------------------------------------|
| RA - RC         | Multi-function output contact  | Refer to P46,                        |
| RB - RC         | Multi-function output contact  | Relay Output Contact                 |
| M0 - GND        | Multi-function input 1         | Refer to P38, 39, 40, 41, 42         |
| M1 - GND        | Multi-function input 2         |                                      |
| M2 - GND        | Multi-function input 3         |                                      |
| M3 - GND        | Multi-function input 4         |                                      |
| M4 - GND        | Multi-function input 5         |                                      |
| M5 - GND        | Multi-function input 6         |                                      |
| MO1 - MCM       | Multi-function PHC output 1    | Refer to P45                         |
| +10V - GND      | Power supply for speed control | Command for power supply             |
|                 |                                | (+10 V)                              |
| AVI - GND       | Analog voltage freq. command   | 0 - 10V or 4 - 20mA                  |
|                 |                                | inputs (10V and 20mA = max. freq.)   |
| AFM - GND       | Analog frequency/current meter | 0 - 10 V output ( 10 V = max. freq.) |

AFM - GND Analog trequency/current meter 0 - 10 V output (10 V = max. treq.) Note : Use twisted-shielded or twisted-pair shielded wires for the control signals. It is recommended to run all signal wiring in a separate steel conduit. The shield wire should only be connected to ground at the drive end of the cable.

Danfoss

#### **Installation Notes:**

- Make sure that the appropriate input fusing with specified current ratings are connected between the AC Power Line and the AC drive. A MCC (contactor with magnetic trip) is recommended between the drive and circuit breaker to provide a means to disconnect the drive from the power line in the event of a fault.
- Make sure that the leads are connected correctly and the drive is properly grounded. (Ground leads should be at least as the same size as input terminals R, S and T.)
- Use ground leads that comply with AWG standards. Make the length of these ground leads as short as possible.
- Should several units be installed side by side, all the units should be grounded directly to the ground terminal. Do not form a loop with the ground leads.



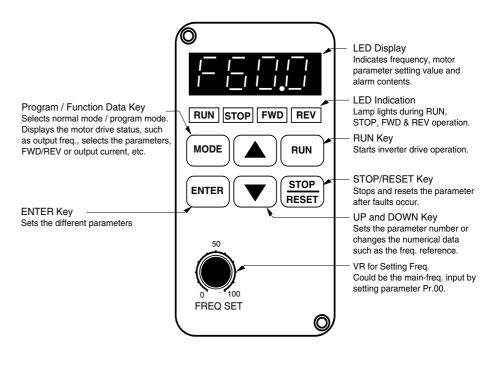
- When the drive output terminals U, V, and W are connected to the motor terminals U, V, and W, respectively, the motor will rotate counter-clockwise (viewed from the shaft of the motor as shown above) when a forward operation command is received (FWD lamp is ON).
- Make sure that the power source supplies the correct voltage and is capable of supplying the required current to the drive.
- When power is applied to the drive, the internal DC bus charge indicator LED will be on.
- Do not attach or remove wiring or connectors when power is applied to the drive. Do not attempt to probe signals on the circuit board while the drive is operating.
- For single phase applications, the AC input line can be connected to any two of the three input terminals R, S, T. Note: The drive is not intended for use with single-phase motors.
- To reverse the direction of rotation, interchange the connection of any of the two motor leads.
- Do not connect the AC input to any of the U, V, W terminals, as this will damage the drive.

Danfoss

- Avoid loose wiring and possible shorts. Tighten all screws on AC circuit terminals securely.
- It is a good practice to maintain a 90° angle between wires connected to the AC circuit terminals and wires connected to the control terminals.
- Use shielded cables for Control Circuit wiring,
- Use conduit for the AC power line. The conduit on both the input and output of the power line should be grounded.
- If an EMI filter is required, it should be located close to the drive. Reducing carrier frequency can also be a way to reduce EMI noise, however audible noise from the motor will increase.
- An L-Filter can be added to the U.V.W. side of AC Motor Drives if needed. Do not use a Capacitor, or L-C Filter (Inductance-Capacitance), or R-C Filter (Resistance-Capacitance).
- A "Ground Fault Interrupt Circuit" can be used. To avoid malfunctioning of the motor and drive, sensitivity of the current sensor should not be less than 200 mA with a response time not less than 0.1 second.

Danfoss

#### Chapter 3


#### **Digital Keypad/Display Operation**

Chapter 3 describes the various controls and indicators found on the Digital Keypad/ Display. The information in this chapter should be read and understood before performing the start-up procedures described in Chapter 4.

- Description of the Digital Keypad/Display
- Description of Display
- Digital Keypad Operating Modes & Programming Steps

#### Description of the Digital Keypad/Display Operating Modes and Functions

When delivered from the factory, the Digital Keypad/Display module is mounted on the front panel of the AC drive. This module has two functions: display and control. The Display shows the current status of the drive. The control function provides the programming interface.





MODE

## Function / Program

Pressing the "mode" key repetitively displays the AFD status such as the reference frequency, output frequency, direction or output current and selects the parameter setting mode.

**VLT® MICRO** 

## ENTER

Enter

Pressing the "ENTER" key to enter the data change mode and again to store the value in memory.

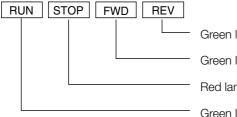
# RUN

**Run** Used to start the AC drive operation. This key has no effect when the drive is controlled by the External Control Terminals.



#### Stop / Reset

Used to stop AC drive operation. If the drive has stopped due to a fault, clear the fault first, then press this key to reset the drive. This key has no effect when the drive is controlled exclusively by the External Control Terminals.




#### Up / Down

Press the "Up" or "Down" keys momentarily to change parameter settings. These keys may also be used to scroll through different operating values or parameters. Pressing the "Up" or "Down" key momentarily, will changes the parameter settings in single-unit increments. To quickly run through the range of settings, press down and hold the key.

Press the "Up" or "Down" key momentarily to select Forward or Reverse directions when in Direction Mode and the drive is controlled by the digital control panel.

### Explanation of the LED Indicators



Green lamp lights during REV operation.

Green lamp lights during FWD operation.

Red lamp lights by pressing STOP.

Green lamp light by pressing RUN.

Danfoss

#### **Quick Set-up**

Refer to the relevant chapters of this manual for detailed instructions to configure the VLT MICRO for your specific requirements.

Before you start, please read the safety instructions in Chapter 1 of this manual. The adjustable frequency drive contains dangerous voltages when connected to the AC line. Improper connection of the motor or the VLT MICRO may cause equipment failure, serious injury or death.

Follow the directions in this Quick Set-up, as well as all local and national safety codes.

#### **Electrical Installation, Power**

Connect the AC line and motor cables as shown in Chapter 2 of this manual.

#### Programming

NOTE:

nameplate:

Max motor frequency

Max motor voltage

Motor rated current

Set the ramp times:

The VLT adjustable frequency drive is programmed by means of the Digital Keypad. Refer to Chapter 3 for the keypad functions.

In order to operate in Quick set-up the Pin Header/Jumpers (located next to the input terminals) should be as shown.



Speed reference is controlled by the "Arrow" keys. If the potentiometer is to be used as the speed reference parameter Pr.00 will need to be programmed to d01.

Set the following parameters according to the motor

 $Pr.52 = \frac{Motor Full Load Amps}{Drive's Max. Cont. Amps} \times 100$ 

Parameter Pr.04

Parameter Pr.05

Parameter Pr.52

Parameter Pr.10

Parameter Pr.11



# RUN STOP FWD REV MODE RUN STOP ENTER RESET $\bigcirc$

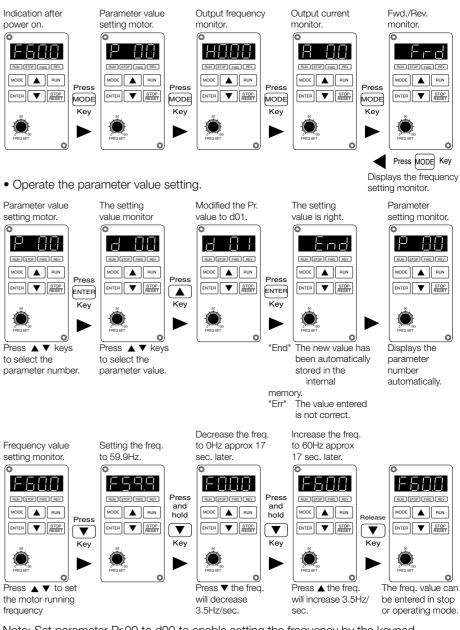
Ó

Drive's Max Continuous Amps Model Amps 176F7300 & 176F7303 2.5 176F7301 & 176F7304 5.0 176F7302 & 176F7305 7.0

## Decel time **Motor Start**

Accel time

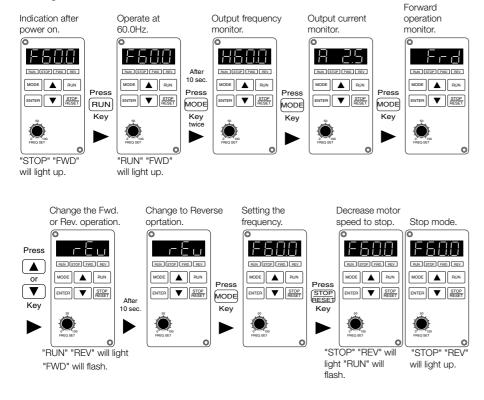
Press the "RUN" key to start the motor. Adjust desired speed using the "Arrow" keys.


Danfoss

### **Explanation of Displayed Messages**

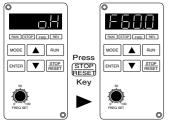
| •            | 1 7 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F            | Displays the AC drives output frequency. The frequency may be determined by any one of the frequency sources that is selected by the [Master frequency setting] or [Jog Frequency] command. It may also be set using the [Multi-step speed setting 1 - 7] as determined by the inputs to Multi-function Input terminals 1, 2 and 3. If the frequency source originates from the control panel, the user can use either the "up" or "down" key to select the frequency. |
| <u>H60.0</u> | Displays the output frequency present at terminals U, V, and W.<br>Displays the custom unit (v), where $v = H \times Pr65$ .<br>Displays the internal counter value (C).<br>Note : Refer to Chapter 5, Pr45, 46, 64 - 66 for detailed description.                                                                                                                                                                                                                     |
| u 5 0 0      | Displays the custom unit (v), where $v = H \times Pr65$ .                                                                                                                                                                                                                                                                                                                                                                                                              |
| - 180        | Displays the custom unit (r), where $r = H \times Pr65$ .                                                                                                                                                                                                                                                                                                                                                                                                              |
| L 5 0 0.     | Displays the custom unit (L), where $L = H \times Pr65$ .                                                                                                                                                                                                                                                                                                                                                                                                              |
| E 36.6       | Displays the custom unit (%), where $\% = H \times Pr65$ .                                                                                                                                                                                                                                                                                                                                                                                                             |
| <u>-999</u>  | Displays the counter value (c).                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| R 5.0        | Displays the output current present at terminals U, V, and W                                                                                                                                                                                                                                                                                                                                                                                                           |
| I. 5.0       | Displays the internal PLC process step currently being performed.                                                                                                                                                                                                                                                                                                                                                                                                      |
| P D I        | Displays the specified parameter.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              | Displays the actual value stored within the specified parameter.                                                                                                                                                                                                                                                                                                                                                                                                       |
| ╞┍╓          | AC drive forward run status.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| - 6          | AC drive reverse run status.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| End          | The display will read "end" (as shown in the display to the left) for<br>approximately 1 second if an input has been accepted. After a<br>parameter value has been set, the new value is automatically stored in<br>memory. To modify an entry, use the "up" and "down" keys.                                                                                                                                                                                          |
| 6            | The display will read "Err", if as input is not accepted, or a parameter value is selected outside the limit of the parameter.                                                                                                                                                                                                                                                                                                                                         |




- Operating The Digital Control Panel
- Indicate the operation mode.



Note: Set parameter Pr.00 to d00 to enable setting the frequency by the keypad.


Danfoss

#### • Change the different indication mode as follows:



• Reset the fault messages.

Frequency setting will be displayed Fault message after the fault is O.H. is displayed. removed.



Danfoss

#### Chapter 4

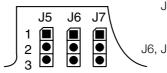
#### **Description of Parameters**

#### Pr.00 Master Frequency Source Select

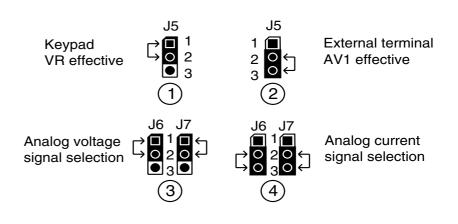
Factory Setting d00

Units None

Settings d00 Master frequency determined by keypad digital control.


d01 Master frequency determined by analog signal of DC 0V - +10V,
a. Performed by keypad potentiometer. The pin header and jumper combined as 1 and 3 in the diagram below.
b. Performed by external terminal AVI. The pin header and jumper

combined as (2) and (3) in the diagram below.


d02 Master frequency determined by analog signal of DC 4mA - 20mA. Performed by external terminal AVI. The pin header and jumper combined as (2) and (4) in the diagram below.

#### Pin Header/Jumper Diagrams:

The pin headers and jumpers are located on the upper right corner of the control board and can be accessed by opening the input terminal cover.



J5: Selects the source of the potentiometer input from the External Control Terminal (AVI) or from the Digital Keypad/Display (LC-03P) potentiometer.
 J6, J7: This jumper is used to select the DC voltage signal or DC current signal for master frequency control.



Danfvisi

#### Pr.01 Operation Command Source Select

Factory Setting d00

Units None

Settings d00 Operating instructions determined by the Digital Keypad/Display.

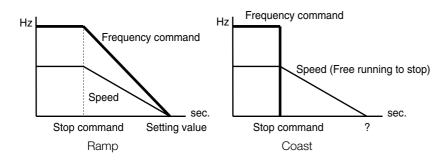
d01 Operating instructions determined by the External Control Terminals. Keypad STOP key is effective.

d02 Operating instructions determined by the External Control Terminals. Keypad STOP key is not effective.

(Refer to parameters 38, 39, 40, 41 and 42 for more details.)

#### Pr.02 Motor Stop Method Select

Factory Setting d00 Units None


Settings d00 Ramp stop

d01 Coast to stop

This parameter determines how the motor is stopped when the AC drive receives a valid stop command.

**Ramp:** The AC drive output frequency decelerates down to the minimum output frequency (Pr.08) in the time specified by Pr.11 or Pr.13, then the output is turned off.

**Coast:** The AC drive output is turned off immediately and the motor free runs until it comes to a stop.



To determine the best method to stop the motor, the type of load needs to be considered.

1. In many applications operator safety and material processing can be improved when "Ramp Stop" is selected. The accel./decel. time required will depend on the specific parameters of your application.

2. The advantage of using "Coast-to-stop" is the motor will heat less during frequent starting and stopping. Applications where "Coast-to-stop" is commonly used are fans, pumps, blowers, mixing and agitating.

Danfoss

#### Pr.03, Pr.04, Pr.05, Pr.06, Pr.07, Pr.08, Pr.09 - V / F Curve

#### Pr.03 Maximum Output Frequency

Factory Setting d60.0 Hz Units 0.1 Hz Parameter value d50.0 - d400.0 Hz

This parameter determines the maximum AC drive output frequency. Analog inputs (0 - 10 V, 4 - 20 mA) are scaled to correspond to the output frequency range.

#### Pr.04 Motor Frequency

Factory Setting d60.0 Hz Units 0.1 Hz Parameter value d10.0 - d400.0 Hz

This value should be set according to rated frequency of the motor as indicated on the motor nameplate.

#### Pr.05 Motor Voltage

Factory Setting d220.0 Units 0.1 V Parameter value d2.0 - d255.0

This parameter determines the Maximum Output Voltage of the AC drive. The maximum output voltage setting must be smaller than or equal to the rated voltage of the motor as indicated on the motor nameplate.

#### Pr.06 Mid-point Frequency

Factory Setting d1.50 Hz Units 0.1 Hz Parameter value d0.1 - d400.0 Hz

This parameter sets the Midpoint Frequency of the V/F curve. It may be used to determine the V/F ratio between the Minimum Frequency and the Mid-point Frequency.

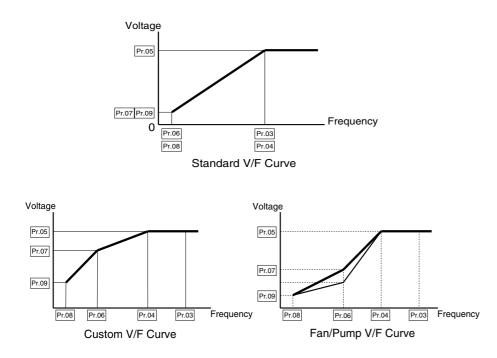
#### Pr.07 Mid-point Voltage

Factory Setting d12.0 V Units 0.1 V Parameter value d2.0 - d255.0

This parameter sets the Midpoint Voltage of the V/F curve. It may be used to determine the V/F ratio between the Minimum Voltage and the Mid-point Voltage.

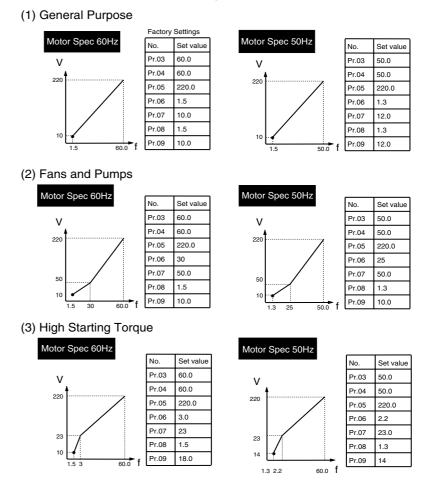
Danfoss

#### Pr.08 Minimum Output Frequency


Factory Setting d1.50 Hz Units 0.1 Hz Parameter value d0.1 - d20.0 Hz

This parameter programs the Minimum Output Frequency of the AC drive.

#### Pr.09 Minimum Output Voltage


Factory Setting d12.0 V Units 0.1 V Parameter value d2.0 - d50.0 V

This parameter programs the Minimum Output Voltage of the AC drive.



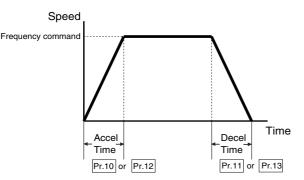
Danfoss

Commonly Used V/F Pattern Settings



Pr.10, Pr.11, Pr.12, Pr.13 Acceleration / Deceleration Time

<u>Pr.10</u> Acceleration Time 1 (Can be programmed while the drive is running.) Factory Setting d10.0 Sec Units 0.1 Sec Parameter value d0.1 - d600.0 Sec


Danfvisi

This parameter is used to determine the time required for the AC drive to ramp from 0 Hz to its Maximum Output Frequency (Pr.03). The rate is linear unless S Curve is "enabled". This rate of acceleration applies to any incremental increase in command frequency unless selected using the Multi-Function Inputs, MI1 - 3. See Parameters 39, 40 and 41. Acceleration time 1 is the default when a Multi-Function Input Terminal has not been programmed to select between Acceleration time 1 and Acceleration time 2.

Pr.11 Deceleration Time 1 (Can be programmed while the drive is running.)

Factory Setting d10.0 Sec Units 0.1 Sec Parameter value d0.1 - d600.0 Sec

This parameter is used to determine the time required for the AC drive to decelerate from the Maximum Output Frequency (Pr.03) down to 0 Hz. The rate is linear unless S Curve is "enabled". Deceleration time 1 is the default when a Multi-Function Input Terminal has not been programmed to select between Deceleration time 1 and Deceleration time 2.



Note: See Pr.101; Automatic Accel and Decel times are default. Change to "Linear Acceleration/Deceleration" to enable manual adjustment.

Pr.12 Acceleration Time 2 (Can be programmed while the drive is running.)

Factory Setting d10.0 Sec Units 0.1 Sec Parameter value d0.1 - d600.0 Sec

This parameter determines the time required for the AC drive to ramp from 0 Hz to the Maximum Operating Frequency (Pr.03). The rate is linear unless S Curve is "enabled". The rate of acceleration applies to any incremental increase in command frequency unless Acceleration Time 1 (Pr.10) is selected. Acceleration Time 1 and 2 may be selected using the Multi-Function Inputs M1 - 3. (See Parameters 39, 40 and 41.)

Danfoss

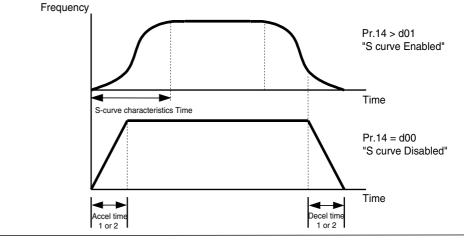
Note: See Pr.101; Automatic Accel and Decel times are default. Change to "Linear Acceleration/Deceleration" to enable manual adjustment.

Pr.13 Deceleration Time 2 (Can be programmed while the drive is running.)

Factory Setting d10.0 Sec Units 0.1 Sec Parameter value d0.1 - d600.0 Sec

This parameter determines the time for the AC drive to decelerate from the Maximum Output Frequency (Pr.03) down to 0 Hz. The rate is linear unless S Curve is "enabled". The rate of deceleration applies to any decrease in command frequency unless Deceleration Time 1 is selected. Deceleration Time 1 and 2 may be selected using the Multi-Function Inputs M1 - 3. (See Parameters 39, 40 and 41.)

#### **Application Notes:**


1. The Accel./Decel. Time is defined as the time required to change the output frequency from the value of Pr.03 to the value of Pr.08 (Maximum and Minimum Output Frequencies).

- 2. The Accel./Decel. time can be calculated by using the parameter values of the following formula: a = [(Pr.10, 11, 12, 13)(Pr.03 Pr.08)](Pr.03 0 Hz).
- 3. The actual Accel./Decel. time should be measured to insure it meets the system requirements.

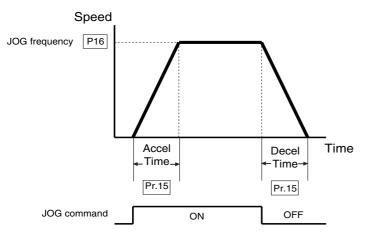
#### Pr.14 S-curve

Factory Setting d00 Sec Units None Parameter value d00 - d07

This parameter should be programmed during start-up. It is used to provide smooth acceleration and deceleration. S-curves can be selected from 1 to 7. Settings 1 to 7 are added to the active accel./decel. times to form an adjustable S-curve.



Danfoss


Pr.15 Jog Accel. / Decel. Time (Can be programmed while the drive is running.) Factory Setting d1.0 Sec Units 0.1 Sec Parameter value d0.1 - d600.0 Sec

This parameter, together with the Jog Frequency (Pr.16), determines the time required for the AC drive to ramp from 0 Hz to the Jog Frequency, or the time required to ramp from the Jog Frequency to 0 Hz.

Pr.16 Jog Frequency (Can be programmed while the drive is running.)

Factory Setting d6.00 Hz Units 0.1 Hz Parameter value d0.1 - d400.0 Hz

Jog Frequency can be controlled through a Multi-Function Input Terminal: M1 to M5 (See Pr.38 - pr.42). Jog starts from the Minimum Output Frequency (Pr.08) accelerating to the Jog Frequency (Pr.16) in the time interval set by the Accel./Decel. Time (Pr.15).



#### Pr.17, Pr.18, Pr.19, Pr.20, Pr.21, Pr.22, Pr.23 - Multi-speed Operation

Multi-Step Speeds 1, 2, 3, 4, 5, 6, 7 (Can be programmed while the drive is running.) Factory Setting d0.00 Hz Units 0.1 Hz

Multi-step speed Parameters 17 - 23 in conjunction with Parameters 78, 79, 81 - 87

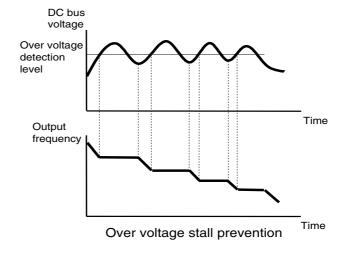
provide multi-step motion control.

Parameter value d0.1 - d400.0 Hz



#### Pr.24 Reverse Run Inhibit

| Factory S | Setting | d00              |
|-----------|---------|------------------|
|           | Units   | None             |
| Settings  | d00     | REV run enabled  |
|           | d01     | REV run disabled |


This parameter inhibits AC drive operation in the reverse direction.

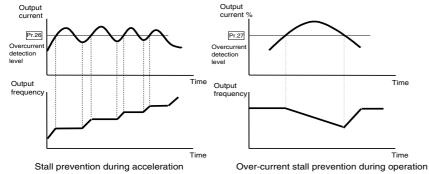
#### Pr.25 Over-voltage Stall Prevention

| Factory Setting | d01  |
|-----------------|------|
| Units           | None |

|          | Offito |                                       |
|----------|--------|---------------------------------------|
| Settings | d00    | Disable over-voltage stall prevention |
|          | d01    | Enbable over-voltage stall prevention |

During deceleration, the DC bus voltage may exceed the maximum amount allowable due to motor regeneration. When this function is enabled, the AC drive will cease to decelerate and then maintain a constant output frequency. The drive will only resume deceleration when the voltage drops below the preset value.




#### Pr.26, Pr.27 Over-Current Stall Prevention

Pr.26 Over-Current Stall Prevention During Acceleration

Factory Setting d170% Units 1% Parameter value d50 - d200%

Danfoss

During periods of rapid acceleration or excessive load, the AC drive output current may increase abruptly and exceed the value specified by Pr.26. When this function is enabled, the AC drive will cease to accelerate, then maintain a constant output frequency. The drive will only resume acceleration when the current drops below the preset value.



#### Pr.27 Over-Current Stall Prevention During Operation

Factory Setting d170% Units 1% Parameter value d50 - d200%

During steady-state operation with the motor load rapidly increasing, the AC drive output current may exceed the limit specified in Pr.27. When this occurs, the output frequency will decrease to maintain a constant motor speed. The drive will accelerate to the steady-state operating frequency only when the output current drops below the level specified by Pr.27. A setting of 100% is equal to the rated current of the drive.

#### Pr.28, Pr.29, Pr.30, Pr.31 - DC Braking Current

#### Pr.28 DC Braking Current

Factory Setting d00% Units 1% Parameter value d00 - d100%

This parameter determines the DC current that will be applied to the motor during braking when the Motor Stop Method (Pr.02) is programmed to "Ramp Stop". The DC braking current is set at increments of 1%. A setting of 100% is equal to the rated current of the drive.

NOTE: When setting this parameter, begin at a lower current level, then increase the value until sufficient holding torque is achieved. The rated motor current should not be exceeded.

Danfoss

#### Pr.29 DC Braking Time During Start-up

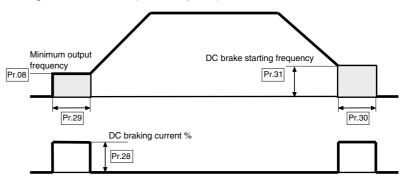
Factory Setting d0.0 Sec Units 0.1 Sec Parameter value d0.0 - d5.0 Sec

This parameter determines the time duration that DC braking current will be applied to the motor during the AC drive start-up.

#### Pr.30 DC Braking Time During Stopping

Factory Setting d0.0 Sec Units 0.1 Sec

Parameter value d0.0 - d25.0 Sec


This parameter determines the time duration that DC braking current will be applied to the motor when the Motor Stop Method (Pr.02) is set to "Ramp Stop".

#### Pr.31 DC Braking Start-up Frequency

Factory Setting d0.00 Hz Units 0.1 Hz

Parameter value d0.0 - d60.0 Hz

This parameter determines the Start-up Frequency for DC braking when the AC drive starts to decelerate. The frequency may be set in 0.1 Hz increments. When the value is less than that specified by Pr.08, Minimum Output Frequency, the start-up frequency for DC braking will be the value specified by this parameter.



#### Pr.32, Pr.33, Pr.34, Pr.35 - Momentary Power Loss Protection

#### Pr.32 Momentary Power Loss Operation Mode Selection

Factory Setting d00

Units None

Settings d00 Operation stops after momentary power loss.

d01 Operation continues after momentary power loss. Speed search starts with the Frequency Reference Value.

Danfoss

d02 Operation continues after momentary power loss. Speed search starts with the Minimum Frequency.

NOTE: Fault contact is not energized during restart after a momentary power loss. This parameter determines the AC drive mode of operation after recovery from a momentary power loss.

#### Pr.33 Maximum Allowable Power Loss Time

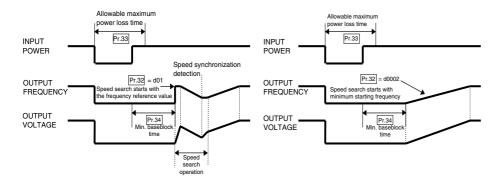
Factory Setting d2.0 Sec Units 0.1 Sec Parameter value d0.3 - d5.0 Sec

During a power failure, if the power loss time is less than the time defined by this parameter, the AC drive will resume operation. If the Maximum Allowable Power Loss Time is exceeded, the AC drive output power will be turned off.

#### Pr.34 Minimum Base Block Time

Factory Setting d0.5 Sec Units 0.1 Sec

Parameter value d0.3 - d5.0 Sec


When a momentary power loss is detected, the AC drive output turns off for a specified time interval determined by Pr.34 before resuming operation. This time interval is called the "Base Block Time". This parameter should be set to a value where the residual output voltage is nearly zero.

#### Pr.35 Speed Search Deactivation Current Level

Factory Setting d100% Units 1%

Parameter value d30 - d200%

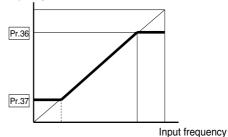
Following a power failure, the AC drive will start its speed search operation only if the output current is greater than the value determined by Pr.35. When the output current is less than that of Pr.35, the AC drive output frequency is determined to be at a "speed synchronization" point. The drive will start to accelerate or decelerate back to the operating frequency at which it was programmed to operate.



Danfoss

#### Pr.36, Pr.37 - Reference Frequency: Upper / Lower limit

#### Pr.36 Reference Frequency Upper Limit


Factory Setting d400.0 Hz Units 0.1 Hz Parameter Value d0.1 - d400.0 Hz This parameter programs the upper limit of the reference frequency in 0.1 Hz increments.

#### Pr.37 Reference Frequency Lower Limit

Factory Setting d0.0 Hz Units 0.1 Hz Parameter Value d0.1 - d400.0 Hz

Determines the lower limit of the reference frequency in 0.1 Hz increments.

#### Output frequency



#### **Application Notes:**

1. Parameters 36, 37 are provided to prevent damage to the AC motor and applicable machinery. Under certain conditions a motor can overheat and/or machinery can be damaged at excessively high speeds.

2. The lower limit for AC drive operation is determined by the greater value of Pr.08 (Minimum Output Frequency) and Pr.37 (Reference Frequency Lower Limit). The upper limit for AC drive operation is determined by the lesser value of Pr.03

(Maximum Output Frequency and Pr.36 Reference Frequency Upper Limit).

#### Pr.38 Multi-Function Input Terminals (M0, M1)

Factory Setting d00 Units None Settings d00 - d02

Pr.39 Multi-Function Input Terminals (M2)

Factory Setting d05 Units None Settings d03 - d20

Danfoss

Pr.40 Multi-Function Input Terminals (M3)

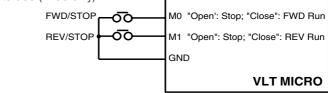
Factory Setting d06 Units None Settings d03 - d20

#### Pr.41 Multi-Function Input Terminals (M4)

Factory Setting d07 Units None Settings d03 - d20

#### Pr.42 Multi-Function Input Terminals (M5)

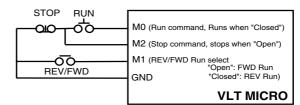
Factory Setting d08 Units None Settings d03 - d20


#### Parameter - Function List:

| Value | Function                               | Value | Function                              |
|-------|----------------------------------------|-------|---------------------------------------|
| d00   | 00 M0: Fwd./Stop, M1: Rev./Stop        |       | 1st-2nd Accel./Decel. Time Select     |
| d01   | 01 M0: Run/Stop, M1: Fwd./Rev.         |       | External Base Block (Normally Closed) |
| d02   | 2 3-Wire Operation Control Mode        |       | External Base Block (Normally Open)   |
| d03   | 3 External Fault (Normally Open)       |       | Increase Output Frequency Control     |
| d04   | 4 External Fault (Normally Closed)     |       | Decrease Output Frequency Control     |
| d05   | 5 External Reset                       |       | Run PLC Program                       |
| d06   | Multi-Step Speed Control 1             |       | Pause PLC Program                     |
| d07   | Multi-Step Speed Control 2             |       | Counter Trigger                       |
| d08   | 3 Multi-Step Speed Control 3           |       | Counter Reset                         |
| d09   | Jog Frequency                          |       | No Operation                          |
| d10   | 10 Accel./Decel. Speed Inhibit Control |       |                                       |

Danfoss

#### **Explanation:**


1. <u>d00</u>, <u>d01</u>: <u>Start/Stop/Directional Control</u> – Mode 1 - Two wire control: Parameter value set to d00 (Pr.38 only).



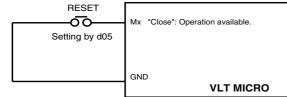
Mode 2 - Two wire control: Parameter value set to d01 (Pr.38 only).



Mode 3 - Three wire control: Parameter value set to d02 (Pr.38 only).

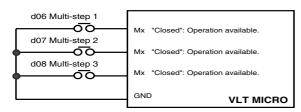


When value d02 is selected for Pr.38, the program value for Pr.39 will be ignored. Three Wire Control remains in effect.

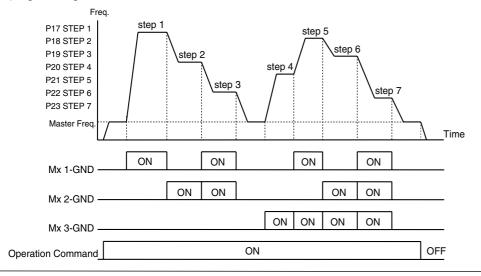

2. <u>d03, d04: External Fault</u> – Parameter values d03, d04 programs Multi-Function Input Terminals: M1 (Pr.38), M2 (Pr.39), M3 (Pr.40), M4 (Pr.41) or (Pr.42) to be External Fault (E.F.) inputs.



The External Fault input signal has fast priority for display of "E.F." by the Digital Keypad/Display. All AC drive functions will be stopped and the motor will free-run. Normal operation can resume after the external fault is cleared and the AC drive is reset.

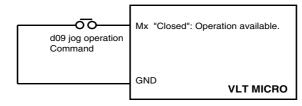

Danfoss

3. <u>d05: External Reset</u> – Parameter value d05 programs a Multi-Function Input Terminal: M1 (Pr.38), M2 (Pr.39), M3 (Pr.40), M4 (Pr.41) or M5 (Pr.42) to be External Reset.



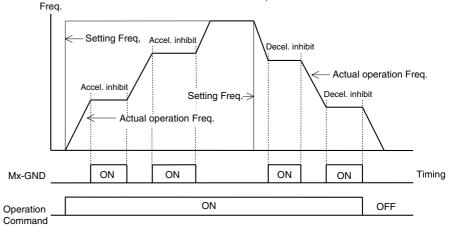

External Reset has the same function as the Reset key on the Digital keypad. External faults O.H., O.C. and O.V. are cleared when this input is used to reset the drive.

4. <u>d06, 07, 08: Multi-Step Speed Command</u> – Parameter values d06, d07, d08 programs any three of the following Multi-Function Input Terminals: M1 (Pr.38), M2 (Pr.39), M3 (Pr.40), M4 (Pr.41) or M5 (Pr.42) for multi-step speed command function.

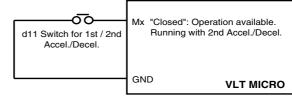



These three inputs select the multi-step speeds defined by Parameters 17 - 23 as shown in the following diagram. Parameters 78 - 87 can also control output speed by programming the AC drive's internal PLC function.




Danfoss

5. <u>d09: Jog Frequency Control</u> – Parameter value d09 programs a Multi-function Input Terminal: M1 (Pr.38), M2 (Pr.39), M3 (Pr.40), M4 (Pr.41) or M5 (Pr.42) for Jog control.

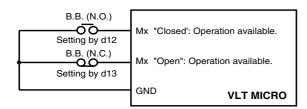



Jog operation programmed by d09 can only be initiated with the motor stopped (refer to Pr.15, Pr.16).

6. <u>d10: Accel./Decel. Speed Inhibit</u> – Parameter d10 programs a Multi-functional Input Terminal: M1 (Pr.38), M2 (Pr.39), M3 (Pr.40), M4 (Pr.41), M5 (Pr.42) for "hold speed" control. When the command is accepted, acceleration and deceleration is stopped and the AC drive maintains the motor at a constant speed.

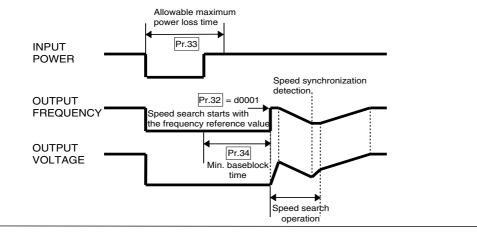



7. <u>d11: First or Second Accel./Decel. Time Select</u> – Parameter value d11 programs a Multi-function Input Terminal: M1 (Pr.38), M2 (Pr.39), M3 (Pr.40), M4 (Pr.41) or M5 (Pr.42) to control selection of first or second Accel./Decel. times (refer to Pr.10, Pr.11, Pr.12, Pr.13).




NOTE: This function is disabled when the drive is performing other functions.

<u>Danfvisi</u>




8. <u>d12, d13: External Base Block</u> – Parameter values d12, d13 program Multi-functional Input Terminals: M1 (Pr.38), M2 (Pr.39), M3 (Pr.40), M4 (Pr.41) or M5 (Pr.42) for external Base Block control. Value d12 is for normally open (N.O.) input, and value d13 is for a normally closed input (N.C.).

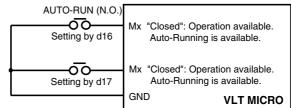


#### Application Note:

When the programmed inputs for d12 or d13 are used to activate base block control, the motor will free run. When base block control is deactivated, the AC drive will start its speed search function and synchronize with the motor speed then accelerated to programmed frequency.



Danfoss

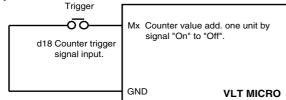

 <u>d14, d15: Increase/Decrease Output Frequency Control</u> – Parameter value d14 programs a Multi-function Input Terminal: M1 (Pr.38), M2 (Pr.39), M3 (Pr.40), M4 (Pr.41) or M5 (Pr.42) to incrementally increase the AC drive output frequency by one unit each time the corresponding input is activated. Parameter value d15 programs an input to decrease the output frequency.

| UP (N.O.)                     | Mx "Closed": Operation available<br>Freq. will increase one unit. |
|-------------------------------|-------------------------------------------------------------------|
| DOWN (N.C.)<br>Setting by d15 | Mx "Closed": Operation available<br>Freq. will increase one unit. |
|                               | GND VLT MICRO                                                     |

#### Application Note:

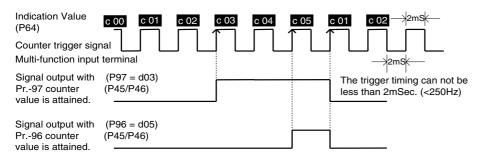
If the Multi-function Input Terminals programmed for Increase/Decrease Output Frequency Control (d14, d15) are asserted continuously, the output frequency will increase or decrease unit by unit continuously. If the input is pulsed, the output frequency will change one unit. This control function is enabled when the drive is running. The modified frequency is stored in non-volitile memory.

10. <u>d16, d17: PLC Function Control</u> – Parameter value d16 programs a Multi-function Input Terminal: M1 (Pr.38), M2 (Pr.39), M3 (Pr.40), M4 (Pr. 41), M5 (Pr.42) to enable the AC drive internal PLC function. Parameter value d17 programs and input terminal to pause the PLC program.

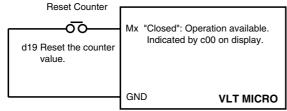



#### Application Note:

Parameter value d16 programs a Multi-function Input Terminal: M1 - M5 to start the internal PLC program control of the AC drive. Parameters 17 - 23, 78, 79 and 81 to 87 define the PLC program. Parameter value d17 programs an input to pause the PLC program when the input is shorted to ground. When the input terminal is not closed, the PLC program runs continuously.


Danfoss

12. <u>d18: Counter Trigger</u> – Parameter value d18 programs a Multi-function Input Terminal: M1 (Pr.38), M2 (Pr.39), M3 (Pr.40), M4 (Pr.41) or M5 (Pr.42) to increment the AC drive's internal counter. When the input transitions from low to high the counter is incremented by 1.

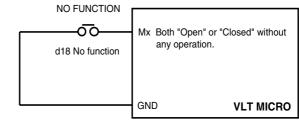



#### Application Note:

The Counter Trigger input can be connected to an external sensor to count a process step or unit of material used in a process. Refer to the diagram below.



13. <u>d19: Counter Reset</u> – Parameter value d19 programs a Multi-function Input Terminal: M1 (Pr.38), M2 (Pr.39), M3 (Pr.40), M4 (Pr.41) or M5 (Pr.42) to reset the counter.




Application Note:

The input terminal resets the counter to "00" which can be displayed on the Digital Keypad/Display.

<u>Danfoss</u>

13. <u>d20: (not used)</u> – Parameter value d20 programs a Multi-function Input Terminal: M1 (Pr.38), M2 (Pr.39), M3 (Pr.40), M4 (Pr.41) or M5 (Pr.42) to provide no function.



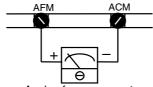
Application Note:

The purpose of this function is to provide isolation for unused Multi-function Input Terminals. Any unused terminals should be programmed to d20 to insure they have no effect on drive operation.

#### Pr.43 Analog Output to Drive External Meter

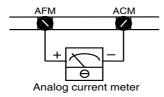
Factory Setting d00 Units None

Settings d00 Analog frequency meter (0 to Maximum Frequency, Pr.03) d01 Analog current meter (0 to 250% of the rated drive output current)


This parameter selects the AC drive output frequency or output current that will be proportional to the analog meter output signal voltage (DC: 0v - 10v).

Pr.44 Analog Output Gain (can be programmed while the drive is running)

Factory Setting d100% Units 1%


Parameter value d01 - d200%

This function regulates voltage level of the AC motor drives analog signal output (either frequency or current output) at the AFM output terminal, which is then fed to a frequency or current indication meter.



The analog voltage output is proportional to the AC drive output frequency. The AC drive's Maximum Output Frequency (Pr.03) is equivalent to 10 v DC. If required, adjust the output level using Pr.44, Analog Output Gain.

Analog frequency meter



The analog voltage output is proportional to the AC drive output current. 10 v DC of analog is equivalent to 2.5 times the AC drive's Rated Output Current. If required, adjust the output level using Pr.44, Analog Output Gain.

Danfoss

#### Pr.45 Multi-function PHC Output Terminal (MO1)

Factory Setting d00 Units None Settings d00 - d14

#### Pr.46 Multi-function Output Relay Contact RA-RC (NO), RB-RC (NC)

Factory Setting d07 Units None Settings d00 - d14

#### **Multi-function Output Program Values**

| Value | Function                     | Value | Function                          |
|-------|------------------------------|-------|-----------------------------------|
| d00   | AC drive operational         | d08   | Desired Frequency Attained        |
| d01   | Pre-set frequency attained   | d09   | PLC Program Running               |
| d02   | Non-zero speed               | d10   | PLC Program Step Completed        |
| d03   | Over-torque detection        | d11   | PLC Program Execution Completed   |
| d04   | Base Block (B.B.) indicator  | d12   | PLC Program Execution Paused      |
| d05   | Low-voltage Detect Indicator | d13   | Terminal Count Value Reached      |
| d06   | AC Drive Control Mode        | d14   | Preliminary Counter Value Reached |
| d07   | Fault Indicator              |       |                                   |

Explanation:

1. <u>d00: AC Drive Operational</u> – The Multi-function Output Terminal contacts will be "closed" when the AC drive is running or the FWD or REV command is executed.

2. <u>d01: Pre-set Frequency Attained</u> – The Multi-function Output Terminal contacts will be "closed" when the AC drive reaches the specified operating frequency defined by Pr.04.

3. <u>d02: Zero-speed Indicator</u> – The Multi-function Output Terminal contacts will be "closed" when the AC drive output frequency is less than the minimum output frequency.

4. <u>d03: Over-torque Detection Indicator</u> – The Multi-function Output Terminal contacts will remain "closed" as long as over-torque is detected. Parameter Pr.61 programs the Over-torque Detection Level. Pr.62 sets for the time limitation for over-torque before the AC drive output is turned off.

5. <u>d04: Base Block Indicator</u> – The Multi-function Output Terminal contacts will always be "closed" as long as the AC drive output is turned off.

6. <u>d05: Low-voltage Detect Indicator</u> – The Multi-function Output Terminal contacts will be "closed" when the AC drive detects a low-voltage state.

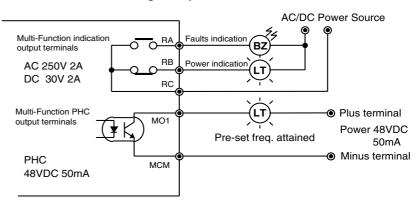
Danfoss

7. <u>d06: AC Drive Control Mode</u> – The Multi-function Output Terminal contacts will be "closed" when the AC drive operation is controlled by the external terminals.

8. <u>d07: Fault Indicator</u> – The Multi-function Output Terminal contacts will be "closed" when a fault is detected.

 <u>d08: AC Drive Control Mode</u> – The Multi-function Output Terminal contacts will be "closed" when the output frequency equals the Desired Frequency attained (Pr.47).
 <u>d09: PLC Program Running</u> – The Multi-function Output Terminal contacts will be "closed" the PLC program is executing.

11. <u>d10: PLC Program Step Completed</u> – The Multi-function Output Terminal contacts will be "closed" within 5 seconds when each multi-step speed is attained.

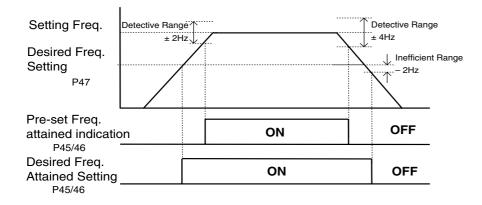

12. d11: PLC Program Completed Execution – The Multi-function Output Terminal

contacts will be "closed" within 5 secs. after the PLC program completes execution. 13. <u>d12: PLC Program Execution Paused</u> – The Multi-function Output Terminal contacts will be "closed" when the PLC program execution is paused by a multi-function input terminal that has been programmed to pause the drive operation.

14. <u>d13: Terminal Count Reached</u> – The Multi-function Output Terminal contacts will be "closed" when the counter value is equeal to the value programmed by Pr.96.
15. d14: Preliminary Counter Value Reached – The Multi-function Output Terminal

contacts will be "closed" when the counter value equeals the value of Pr.97.

#### Multi-function terminals wiring example




#### Pr.47 Desired Frequency Attained

Factory Setting d0.0 Hz Units 0.1 Hz Parameter value d0.0 - d400.0 Hz Used to select a specified frequency in increments of 0.1 Hz.

Danfoss

#### Multi-function output terminal operation (d01 and d08)



#### Pr.48 Output Frequency Offset (can be programmed while the dirve is running)

Factory Setting d0.00 Units 0.1 Hz Parameter value d0.0 - d350.0 Hz

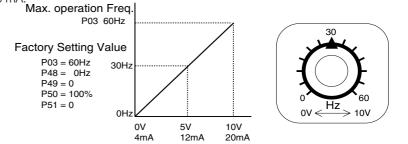
Pr.49 Process Signal Bias (can be programmed while the dirve is running)

Factory Setting d00 Units none

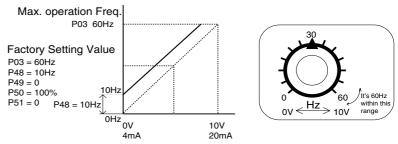
Parameter value d00 (minimum output frequency corresponds to 0 V, 4 mA) d01 (minmum output frequency corresponds to potential bias)

#### Pr.50 Process Signal Gain

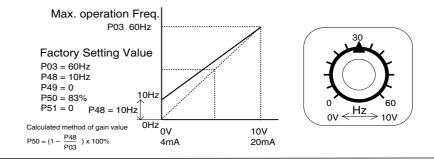
Factory Setting d100 Units 1% Parameter value d01 - d200%


#### Pr.51 Process Signal Reverse Motion

Factory Setting d00 Units none Parameter value d00 (forward motion only) d01 (reverse motion enabled)

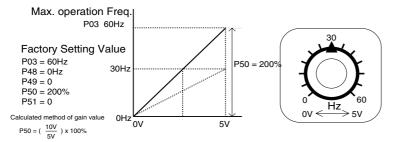

Danfoss

In the following examples the output frequency and direction of motion is controlled by a potentiometer connected to the external terminals or the potentiometer in the Digital Keypad/Display. Observe the interaction and effect of parameters: Pr.48, 49, 50, 51 on the potentiometer operation.

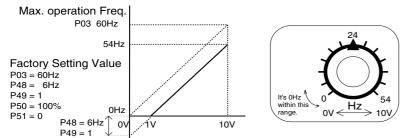

Example 1: The configuration in this example is the most common. Set Pr.00 to d00, d01 or d02 and select J5, J6, J7 jumper settings to control the output frequency: through potentiometer in the Digital Keypad/Display, or through the external AV1: 0-10 V, 4-20 mA.



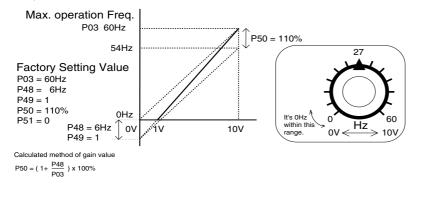
Example 2: In this example the output frequency range is 10 Hz to 60 Hz. Turning the potentiometer fully counter clockwise, corresponds to an output frequency of 10 Hz. Turning the potentiometer fully clockwise, to the stop, corresponds to 60 Hz. The midpoint corresponds to 40 Hz. The effective AVI signals are: 0-8.33 V or 4-13.33 mA.




Example 3: In this example the Process Signal Gain (Pr.50) is d83%. The control range of the potentiometer is 10 - 60 hz as shown below. The corresponding range on the external AVI terminals is: 0-10 V and 4-20 mA.

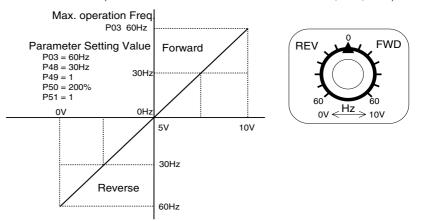



Danfoss

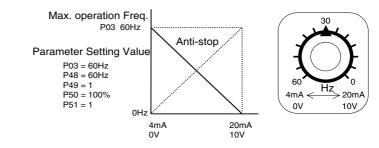

Example 4: In this example a Process Signal range of 0 to 5 V is used to control the output frequency from 0 to 60 Hz. Programming for this function can be done in two ways: 1 set Pr.50 to 200%, 2 set Pr.03 to 120 Hz, Pr.50 to 100%.



Example 5: In this example Pr.49 is set to a 1 V Process Sigfnal bias and Pr.50 is set to 100% creating a potentiometer control voltage range of 1 to 10 V and an output frequency range of 0 to 54 Hz. This configuration is suitable for high noise environments where an external potentiometer is connected to the external AVI terminals by a cable.




Example 6: This example is a variation of Example 5. Set Pr.50 to 110% to extend the maximum output frequency to 60 Hz. (In Example 5 the maximum output frequency is 54 Hz.)




Danfoss

Example 7: This example is a combination of the previous 6 examples with forward and reverse motion added. Note: forward and reverse motion control is not available through the external terminals. (Refer to Pr.38-42 and Parameter values d00, d01, d02.)



<u>Example 8:</u> In this example sensors are used to control the output frequency from 60 to 0 Hz. As the process signal increases from 4 to 20 mA, the output frequency decreases from 60 to 0 Hz.



#### Pr.52, Pr.53 – Motor Operating Specifications

Pr.52 Motor Rated Current (can be programmed while drive is running)

Factory Setting d100%

Units 1%

Parameter value d30 - d120%

This parameter must be set according to the ampere specification found on the motor nameplate. The setting will limit the AC drive output current and prevent the motor from overheating. In the event the motor current exceeds this value, the output frequency will be reduced until the motor current drops below this limit.



Pr.53 Motor No-load Current (can be programmed while drive is running)

Factory Setting d40 Units 1% Parameter value d00 - d99%

Determines the Motor No-load Current in 1% increments. The Motor Rated Current (Pr.52) is set to 100%.

#### Pr.54 Torque Compensations (can be programmed while drive is running)

Factory Setting d02 Units 1% Parameter value d00 - d10%

This parameter may be set so that the AC drive will increase its voltage output during start-up to obtain a higher initial starting torque. The additional torque will be present until the maximum operating frequency is attained.

CAUTION: Be careful when selecting the value for Pr.54. If the value is too high, the motor might overheat or be damaged.

#### Pr.55 Slip Compensation (can be programmed while drive is running)

Factory Setting d0.0 Units 0.1 Hz Parameter value d0.0 - d10.0

As motor load increases, the motor slip increases. This parameter may be used to compensate for the nominal slip within a range of 0.0 - 10.0 Hz. When the output current of the AC drive is greater than the Motor No-load Current (Pr.53), the AC drive will adjust its output frequency according to value of Pr.55.

#### Pr.56 Special Output Display

Factory Setting d00 Units None Settings d00 Display actual motor operation current d01 Display DC Bus voltage

Displayed DC Bus voltage can be used to be the basis of input voltage, and is read-only.

#### Pr.57 Multi-function Indicator Output Contacts RA-RC (N.O.), RB-RC (N.C.)

Factory Setting d##.# Units None Settings None

This parameter programs the output contacts: RA-RC (N.O.) or RB-RC (N.C.) to indicate the AC drive is operating at maximum rated output current.

Danfoss

#### Pr.58, Pr.59 - Electronic Thermal Overload Relay

#### Pr.58 De-rating for Output Current vs. Temperature

Factory Setting d02

Units None

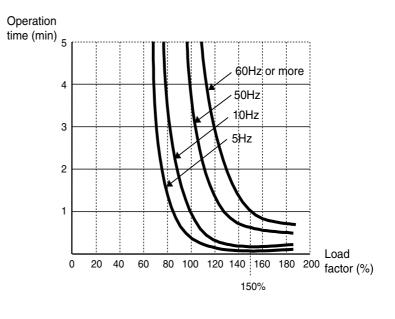
Settings d00 Active with standard motor

- d01 Active with special motor
- d02 Inactive

To prevent self-cooled motors from over heating when running at low speeds, program this parameter to limit the AC drive output power.

d00:The electronic thermal characteristics match a reduced torque motor (standard motor).

d01:The electronic thermal characteristics match a constant torque motor (special motor).


#### Pr.59 Activation Time for I<sup>2</sup>t Protection

Factory Setting d60

Units 1 Sec

Parameter value d30 - d300 Sec

This parameter programs the time required to activate the I<sup>2</sup>t electronic thermal protection function. The activation time may be defined according to short, standard and long time ratings.



Danfoss

#### Pr.60, Pr.61, Pr.62 - Over-torque Detection

#### Pr.60 Over-torque Detection Mode

Factory Setting d00

Units None

- Settings d00 Over-torque Detection not enabled
  - d01 Over-torque Detection during constant speed operation. Drive operation halted after over-torque detection.
  - d02 Over-torque Detection during constant speed operation. Drive operation continues after over-torque detection.
  - d03 Over-torque Detection during operation.
  - Drive operation halted after over-torque detection.
  - d04 Over-torque Detection during operation.

Drive operation continues after over-torque detection.

This parameter determines the AC drive's operation after Over-torque is detected. Over-torque Detection is based on the following: when the output current exceeds the Over-torque Detection Level (Pr.61, factory preset value = 150%) and the Over-torque Detection Time (Pr.62, factory setting = 0.1 second = 0.1 second, hysteresis fixed at 10%). The Multi-function PHC output 1 and 2 may be set to indicate over-torque condition. (Refer to Pr.45 and 46).

#### Pr.61 Over-torque Detection Level

Factory Setting d150 Units 1%

Parameter value d00 - d200%

This parameter sets the Over-torque Detection Level in 1% increments. (The AC drive rated current is defined to be 100%).

#### Pr.62 Over-torque Detection Time

Factory Setting d0.1 Sec Units 0.1 Sec Parameter value d0.1 - d10 Sec This parameter sets the Over-torque Detection Time in units of 0.1 seconds.

#### Pr.63 Reserved

Danfoss

#### Pr.64 User Defined Function for Display

Factory Setting d06 Units None

Settings

d00 Displays AC drive output frequency (Hz) d01 Displays the user-defined setting (V, meter/sec where V = H)

do? Displays the user-defined setting (v, meter/sec where v do2 Displays the user-defined setting (r):(R.P.M.)

d03 Displays the user-defined setting (L):(Length)

d04 Displays the user-defined setting (=):(%)

d05 Displays the value of the internal counter (C)

d06 Displays the setting Frequency (F)

d07 Displays the parameter setting (P)

d08 Reserved

d09 Displays the motor operating current (A)

d10 Displays Fwd./Rev. mode

The parameter can be set to display the user-defined value. (where  $V = H \times Pr.65$ )

#### Pr.65 Coefficient of Line Speed

Factory Setting d160

Units 0.1

Parameter value d0.1 - d160

Coefficient K determines the multiplying factor for the user-defined value (v). The value of the user-defined setting (v) is calculated and displayed as follows: Display Value, v = output frequency x K. The maximum value that can be displayed is 999. If the value of "v" exceeds "999" the display value defaults to v = output frequency x 0.1.

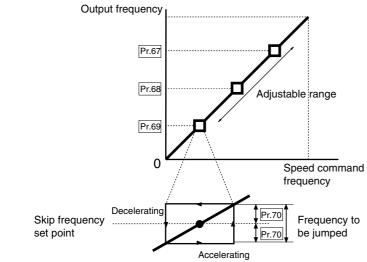
#### Pr.66 Master Frequency

Factory Setting d1.0 - 400 Hz Parameter value d0.1 - d160

#### Pr.67, Pr.68, Pr.69 Frequency Setting Prohibited

#### Pr.67, 68, 69 Skip Frequency 1, 2, 3

Factory Setting d0.00 Hz Units 0.1 Hz Parameter value d0.0 - d400.0 Hz


This parameter determines the three skip frequencies which in conjunction with Pr.70, Skip Frequency Band, will cause the AC motor drives to skip operation at each frequency band. Note: Pr.67 > Pr.68 > Pr.69.

Danfoss

#### Pr.70 Frequency Bandwidth Setting Prevention

Factory Setting d0.00 Units 0.1 Hz Parameter value d0.1 - d20.0 Hz

This parameter determines the frequency band for a given Skip Frequency. Half of the Skip Frequency Band is above the Skip Frequency and the other half is below. Programming this parameter to 0.1 disables all skip frequencies.



#### Pr.71 PWM Carrier Frequency Select

Factory Setting d15

Units 1 kHz

Parameter value d01 - d18 kHz

This parameter determines the carrier frequency for the "Pulse Width Modulated" output.

| Carrier<br>frequency | Electromagnetic<br>noise | Noise leakage<br>current | Heat<br>dissipation |
|----------------------|--------------------------|--------------------------|---------------------|
| 1kHz                 | large                    | small                    | small               |
| 3kHz                 | ▲                        | <b>▲</b>                 | <b>▲</b>            |
| 9 kHz                |                          |                          |                     |
| 15 kHz               | ↓                        |                          | ↓                   |
| 18 kHz               | small                    | large                    | large               |

Note: Audible of AC motor can be reduced by using a higher carrier frequency, however please note that the rated output current of the drive decreases by 0.2A for every 1 kHz increase in carrier above 16 kHz.

Danfoss

#### Pr.72 Auto-Reset / Restart Operation Following a Fault

Factory Setting d00 Units none Parameter value d00 - d10

Auto-Reset/Restart Operation may be performed up to 10 times after a fault has occurred. Setting the parameter to d00 disables the Reset/Restart operation after a fault has occurred. When the drive detects over current or over voltage the Auto Reset/ Restart function can be selected to automatically restart the drive.

#### Pr.73, Pr.74, Pr.75 - Three Most Recent Fault Records

#### Pr.73, 74, 75 The 1st, 2nd, 3rd most recent fault record

Factory Setting d00 Units none Settings d00 Fault records clear (no errors occurred) d01 Over-current (oc) d02 Over-voltage (ov) d03 Overheat (oH) d04 Overload (oL) d05 Overload 1 (oL1) d06 External Fault (EF) d07 CPU failure 1 (CF1) d08 CPU failure 3 (CF3) d09 Hardware Protection Failure (HPF) d10 Over-current during acceleration (OCA) d11 Over-current during deceleration (OCd) d12 Over-current during steady state operation (OCn) d13 Ground fault or false failure (GFF) d14 Manufacturer-used diagnostics d15 Manufacturer-used diagnostics d16 Manufacturer-used diagnostics d17 External Base Block (bb) d18 Overload 2 (oL2) d19 Manufacturer-used diagnostics d20 Software protection code

Parameters: Pr.73, Pr.74 and Pr.75 store the three most recent faults that have occurred. Set these parameters to d00 to clear the fault and return the drive to service. The fault should be removed before returning the drive to service.

Danfoss

#### Pr.76 Parameter Key

Factory Setting d00

Units None

Settings d00 All parameters can always be set and read

d01 All parameters are read-only

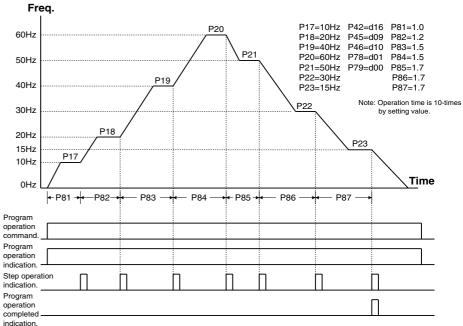
d02-d09 Not used

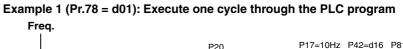
d10 Resets all parameters to the factory defaults

This parameter controls the programming and read status for all parameters. Value d10 resets all parameters to factory settings.

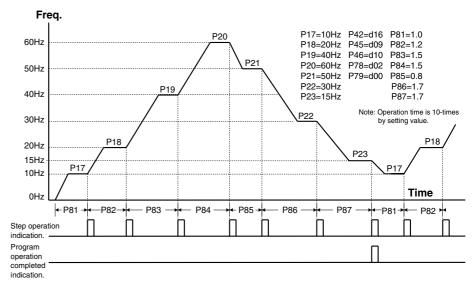
#### Pr.77 Reserved

#### Pr.78 PLC (Programmable Logic Controller) Operation Mode


Factory Setting d00

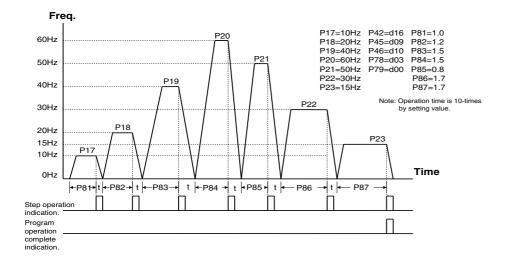

Units None

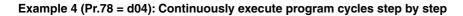
- Settings d00 Disable PLC program execution
  - d01 Execute one cycle of the PLC program
  - d02 Continuously execute program cycles
  - d03 Execute one cycle step by step
  - d04 Continuously execute program cycles step by step

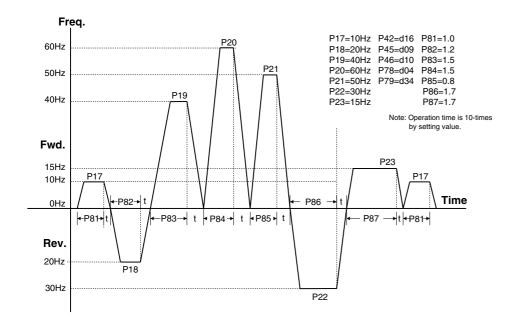

This parameter controls PLC program execution: Pr.79 - 87.

Danfoss

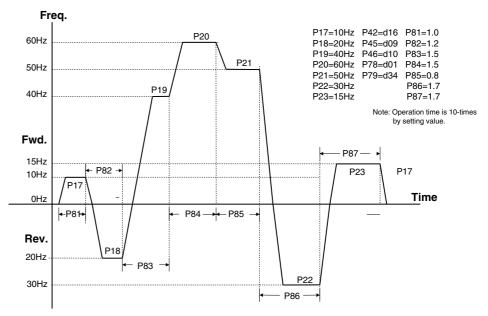






Example 2 (Pr.78 = d02): Continuously execute program cycles




Danfoss


#### Example 3 (Pr.78 = d03): Execute one cycle step by step







Danfoss

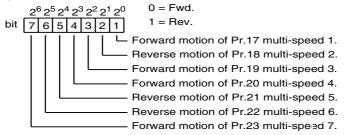


Example 5 (Pr.78 = d01): Execute one cycle through the PLC program

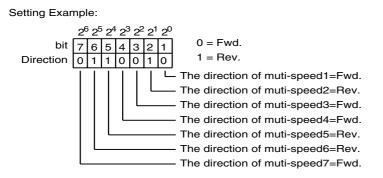
Application Note:

Changing the value of Jog parameters 15 and 16 will interrupt PLC program execution. PLC program execution will not be interrupted when and other parameter values are changed.

#### Pr.79 PLC Forward/Reverse


Factory Setting d00 Units None Settings d00 - d127

This parameter controls the direction of motion for the multi-speed parameters 17 to 23.


Danfoss

Explanation:

The equivalent 7-bit binary number is used to program forward/reverse motion for each of the 7 speed steps.



Example: parameter value = d50 equals 0110010



Decimal value = binary bit  $7x2^{6}$ + bit  $6x2^{5}$ + bit  $5x2^{4}$ + bit  $4x2^{3}$ + bit  $3x2^{2}$ + bit  $2x2^{1}$ + bit  $1x2^{0}$ =  $0x2^{6}$ +  $1x2^{5}$ +  $1x2^{4}$ +  $0x2^{3}$ +  $0x2^{2}$ +  $1x2^{1}$ +  $0x2^{0}$ = 0 + 32 + 16 + 0 + 0 + 2 + 0= 50Setting the P79 = d50

Attached:  

$$2^{0} = 1$$
  $2^{3} = 8$   $2^{6} = 64$   
 $2^{1} = 2$   $2^{4} = 16$   
 $2^{2} = 4$   $2^{5} = 32$ 

Danfoss

#### Pr.80 Manufacturer Model Information

Factory Setting d## Units None Settings d00 220V 3-Phase/1-Phase 0.5Hp d01 400V 3-Phase/1-Phase 0.5Hp d02 220V 3-Phase/1-Phase 1.0Hp d03 400V 3-Phase/1-Phase 1.0Hp d04 220V 3-Phase/1-Phase 2.0Hp d05 220V 3-Phase/1-Phase 2.0Hp d06 200V 3-Phase/1-Phase 3.0Hp d07 200V 3-Phase/1-Phase 3.0Hp

This parameter contains information on the drive: model number, firmware version, etc. (The parameter is read only).

#### Pr.81 ~ Pr.87 PLC Program Step Time Intervals

Factory Setting d0.0

Units 10 Sec

Settings d0.0 - d650

Each of the parameters: 81 to 87 control the time intervals for each Multi-speed Step defined by Pr.17 to Pr.23.

#### Pr.88 ~ Pr.94 Serial Communication (See Appendix D in this manual.)

#### Pr.95 Auto Energy-saving

Factory Setting d00

Units None

Settings d00 Without energy-saving operation

d01 With energy-saving operation

While enabling auto energy-saving, the AC motor drive operates at full power during acceleration/deceleration, and provides the motor optimum voltage calculated automatically based on the load power when operating at fixed rotation speed. This function is not suitable for frequent load variation or load whose operation voltage is close to its rated load. **Output voltage** 

100% 70% 50% base frequency base frequency Output characteristics curve of energy-saving operation



Danfoss

#### Pr.96 Count Down Completion Settings

Factory Setting d00 Units None Settings d00 ~ d999

This parameter defines the terminal count value for the internal counter. The counter can be incremented by a low-to-high transition on a selected Multi-Function Input Terminal: M1 or M2. Upon completion of the count, if Pr.45 is programmed to d13, the Multi-Function Output Terminal (MO1) will be closed. If Pr.46 is programmed to d13, the Multi-Function Relay Contact RA, RB, RC will be closed.

#### Pr.97 Preset Count Down Completion Settings

Factory Setting d00 Units None Settings d00 ~ d999

This parameter sets a preliminary count value for the internal counter. The counter can be incremented by a low-to-high transition on one of the programmed Multi-Function Input Terminals: M1 or M2. The count starts at c01. When it reaches the preliminary count value and the selected Multi-Function Output Terminal will be closed (Pr.45 = d14). Preliminary Count can be used to initiate an external event before the "terminal count" is reached. (Se Pr.38, 39, 40, 41, 42, 45, 46 for further details).

#### Pr.98 ~ Pr.99 Reserved

#### Pr.100 Software Version

Factory Setting d### Units None Settings None

This parameter shows the software version of the AC motor drive, and is read-only.

Danfoss

#### Pr.101 Auto Acceleration/Deceleration Adjustment Selection

Factory Setting d00 Units None

Settings

d00 Linear acceleration deceleration

- d01 Automatic acceleration, linear deceleration
- d02 Linear acceleration, automatic deceleration
- d03 Automatic acceleration, deceleration
- d04 For deceleration and stall due to overvoltage

Auto acceleration/deceleration adjustment selection can reduce the mechanical vibration resulted from run and stop. When acceleration, the AC motor drive can maintain the acceleration current to its rated value, making the motor operate to the set frequency by the fastest acceleration. When decelerating, it can also judge the load regeneration automatically, and then stop the motor smoothly in the fastest deceleration time.

Using auto acceleration/deceleration selection can avoid complex regulation procedure. It performs acceleration operation without stall and deceleration stop without braking resistors. It can also improve operation efficiency effectively and save energy.

This parameter provides five modes from which to choose:

- d00 Linear acceleration deceleration
- (operation at Pr.10, Pr.11 or Pr.12, Pr.13 acceleration/deceleration time) d01 Automatic acceleration, linear deceleration

(operation by automatic acceleration, Pr.11 or Pr.13 deceleration time) d02 Linear acceleration, automatic deceleration

(operation by automatic deceleration time, Pr.10 or Pr.12 acceleration time) d03 Automatic acceleration deceleration

(acceleration/deceleration time is completely decided by AC motor drive automatic control)

d04 Linear acceleration/deceleration according to the time setting of parameters Pr.11 and Pr.13 auto deceleration.

The auto deceleration function is not suitable when using braking resistors.

#### Pr.102 Auto Voltage Regulation (AVR)

Factory Setting d03

#### Units None

Settings

- d00 Enable auto voltage regulation
  - d01 Disable auto voltage regulation
  - d02 Disable auto voltage regulation when stop
  - d03 Disable auto voltage regulation when deceleration

Danfoss

The rated voltage of motor is normally AC220/200V, 60Hz/50Hz. The input voltage of AC motor drive can be AC180V~264V, 50Hz/60Hz. Without auto voltage regulation, if the input voltage of AC motor drive is AC250V, then the voltage output to the motor is also AC250V. Under the circumstance that the motor operates with voltage in excess of rated voltage for 12%~20%, it will cause temperature increase, insulation damage and unstable torque output. In the long run, the life of the motor will be shortened.

The auto voltage regulation of AC motor drive can stabilize the output power to the motor rated voltage automatically when the output power exceeds the motor rated voltage. For example, with V/F curve set as AC200V/50Hz, if the input power is AC200V~264V, the voltage output to the motor will be stable at AC200V/50Hz, never exceeding the set voltage. If the input power varies between AC180V and AC220V, the voltage output to the motor will proportion to the input power.

When we find the motor stops with ramp type, disabling auto voltage regulation will shorten the deceleration time.

#### Pr.103 ~ Pr.110 Reserved

#### Pr.111 Deceleration S curve Setting

Factory Setting d00 Units None Parameter value d00 ~ d7

This parameter can be set to obtain a slow stop without hard braking. The deceleration S curve will differ according to the setting value from 1-7. If there is no specific setting of this parameter, the parameter of acceleration/deceleration S curve is determined by parameter Pr.14.

When the parameter setting is d00, then the acceleration/deceleration timing is determined by parameter Pr,14 If the parameter setting is between d01 to d07, then Pr.14 is set as acceleration, and Pr.111 is deceleration.

#### Pr.112 External Terminal Scanning Time

Factory Setting d00 Units None Parameter value d00 ~ d20

This function can screen and protect external terminals when the CPU mis operates due to the external disturbance. Factory setting of the scanning time is 2ms. For example: d01; 2ms, d02; 4ms, etc.

It is necessary to change the parameter Pr.77 setting to d02, in order to change the scanning time when setting this parameter.

Danfoss

## Chapter 5

Summary of Parameters This chapter summarizes all 10 of the parameter groups. For complete descriptions of individual parameters refer to Chapter 4.

| No. | Parameter                            | Function                              | Parameter                                                                                                                                                                                                                                                                                                        | Factory |
|-----|--------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|     | Name                                 | Explanation                           | Value                                                                                                                                                                                                                                                                                                            | Setting |
| 00  | Master Speed<br>Frequency<br>Setting | Master frequency<br>source select     | d00:Master frequency input<br>determined by the digital<br>control panel<br>d01:Master frequency input<br>determined by the analog<br>signal (DC 0 to +10 V)<br>d02:Master frequency input<br>determined by the analog<br>signal (DC 4 to 20 mA)                                                                 | d00     |
| 01  | Operation<br>Command<br>Source       | Operation<br>command<br>source select | d00:Operating instructions<br>determined by the digital<br>control panel<br>d01:Operating instructions<br>determined by the external<br>terminal connections,<br>keypad STOP key effective<br>d02:Operating instructions<br>determined by the external<br>terminal connections, keypad<br>STOP key not effective | d00     |
| 02  | Motor stop<br>method                 | Motor stop<br>method select           | d00:RAMP stop<br>d01:Coasting to stop                                                                                                                                                                                                                                                                            | d00     |
| 03  | V/F Curve                            | Max output freq.                      | d50.0 - d400. Hz                                                                                                                                                                                                                                                                                                 | d60.0   |
| 04  | Setting                              | Max voltage freq.                     | d10.0 - d400. Hz                                                                                                                                                                                                                                                                                                 | d60.0   |
| 05  | (13 & 14)                            | Max output volt                       | d2.0 - d255.0 V                                                                                                                                                                                                                                                                                                  | d220.   |
| 06  |                                      | Mid-point freq.                       | d0.1 - d400. Hz                                                                                                                                                                                                                                                                                                  | d1.50   |
| 07  |                                      | Mid-point volt                        | d002.0 - d255. V                                                                                                                                                                                                                                                                                                 | d12.0   |
| 08  |                                      | Min output freq.                      | d0.1 - d20.0 Hz                                                                                                                                                                                                                                                                                                  | d1.50   |
| 09  |                                      | Min output volt                       | d2.0 - d50.0 V                                                                                                                                                                                                                                                                                                   | d12.0   |
| 10  | Accel/Decel                          | Acceleration time 1                   | d0.1 - d600. sec                                                                                                                                                                                                                                                                                                 | d10.0   |
| 11  | Time Setting                         | Deceleration time 1                   | d0.1 - d600. sec                                                                                                                                                                                                                                                                                                 | d10.0   |
| 12  |                                      | Acceleration time 2                   | d0.1 - d600. sec                                                                                                                                                                                                                                                                                                 | d10.0   |

Danfoss

| <b>N N</b> | -                 | <b>–</b>                                 |                                                     |                    |
|------------|-------------------|------------------------------------------|-----------------------------------------------------|--------------------|
| No.        | Parameter<br>Name | Function<br>Explanation                  | Parameter<br>Value                                  | Factory<br>Setting |
| 13         | INdifie           | Deceleration time 2                      | d0.1 - d600. sec                                    | d10.0              |
| 14         | S-curve           | S-curve                                  | d00 - d07                                           | d00                |
| 15         | Jog Operation     | Jog acel/decel time                      | d0.1 - d600. sec                                    | d1.0               |
| 16         | Setting           | Jog frequency                            | d0.1 - d400. Hz                                     | d6.00              |
| 17         | Multi-step        | Multi-step speed 1                       | d0.0 - d400. Hz                                     | d0.00              |
| 18         | Operation         | Multi-step speed 2                       | d0.0 - d400. Hz                                     | d0.00              |
| 19         | Speeds            | Multi-step speed 3                       | d0.0 - d400. Hz                                     | d0.00              |
| 20         | opoodo            | Multi-step speed 4                       | d0.0 - d400. Hz                                     | d0.00              |
| 21         |                   | Multi-step speed 5                       | d0.0 - d400. Hz                                     | d0.00              |
| 22         |                   | Multi-step speed 6                       | d0.0 - d400. Hz                                     | d0.0               |
| 23         |                   | Multi-step speed 7                       | d0.0 - d400. Hz                                     | d0.0               |
| 24         | REV run           | REV run inhibit                          | d00:REV run enable                                  | d00                |
|            | inhibit           |                                          | d01:Rev run disable                                 |                    |
| 25         | Over-volt Stall   | Over-voltage stall                       | d00:Disable over-volt stall prevent                 | d01                |
|            | Prevention        | prevention                               | d01:Enable over-volt stall prevent                  |                    |
| 26         | Over-current      | Over-current stall                       | d50 - d200%                                         | d170               |
|            | Stall             | prevention (during                       |                                                     |                    |
| 07         | Prevention        | acceleration)                            | 150 10000/                                          | 470                |
| 27         |                   | Over-current stall<br>prevention (during | d50 - d200%                                         | d170               |
|            |                   | operation)                               |                                                     |                    |
| 28         | DC Braking        | DC braking current                       | d0.0 - d100%                                        | d0.0               |
| 29         | 5                 | DC braking time                          | d0.0 - d5.0 sec                                     | d0.0               |
|            |                   | during start-up                          |                                                     |                    |
| 30         |                   | DC braking time                          | d0.0 - d25.0 sec                                    | d0.0               |
|            |                   | during stopping                          |                                                     |                    |
| 31         |                   | DC braking start-up                      | d0.0 - d60.0 Hz                                     | d0.0               |
|            |                   | frequency                                |                                                     |                    |
| 32         | Momentary         | Momentary power                          | d00:Operation stops after                           | d00                |
|            | Power Loss        | loss operation<br>mode selection         | momentary power loss                                |                    |
|            | Protection        | mode selection                           | d01:Operation continues after momentary power loss. |                    |
|            |                   |                                          | Speed search starts with the                        |                    |
|            |                   |                                          | frequency reference value.                          |                    |
|            |                   |                                          | d02:Operation continues after                       |                    |
|            |                   |                                          | momentary power loss.                               |                    |
|            |                   |                                          | Speed search starts with the                        |                    |
|            |                   |                                          | minimum frequency                                   |                    |

Danfoss

| No. | Parameter<br>Name              | Function<br>Explanation                       | Parameter<br>Value                 | Factory |
|-----|--------------------------------|-----------------------------------------------|------------------------------------|---------|
|     |                                | •                                             |                                    | Setting |
| 33  |                                | num allowable<br>loss time                    | d0.3 - d05.0 sec                   | d2.0    |
| 34  | Freq Searching                 | Min base block time                           | d0.3 - d05.0 sec                   | d0.5    |
| 35  | Function<br>Setting            | Speed search<br>deactivation<br>current level | d30 - d200%                        | d150    |
| 36  | Reference Freq<br>Upper/Low    | . Reference freq.<br>upper limit              | d0.1 - d400. Hz                    | d400.   |
| 37  | Limit Setting                  | Reference freq.<br>lower limit                | d0.0 - d400. Hz                    | d0.0    |
| 38  | Multi-function                 | Multi-func input(M1)                          | d00:Fwd/Stop, Rev/Stop control     | d00     |
| 39  | Input Terminal                 | Multi-func input(M2)                          | d01:Fwd/Rev, Run/Stop control      | d05     |
| 40  | Function                       | Multi-func input(M3)                          | d02:3-wire operation control mode  | d06     |
| 41  |                                | Multi-func input(M4)                          | d03:External fault: N.O. input     | d07     |
| 42  |                                | Multi-func input(M5)                          | d04:External fault: N.C. input     | d08     |
|     |                                |                                               | d05:RESET control                  |         |
|     |                                |                                               | d06:Multi-step speed control 1     |         |
|     |                                |                                               | d07:Multi-step speed control 2     |         |
|     |                                |                                               | d08:Multi-step speed control 3     |         |
|     |                                |                                               | d09:Jog frequency control          |         |
|     |                                |                                               | d10:Accel/decel speed inhibit      |         |
|     |                                |                                               | d11:1st or 2nd accel/decel time    |         |
|     |                                |                                               | d12:External baseblock (N.O.)      |         |
|     |                                |                                               | d13:External baseblock (N.C.)      |         |
|     |                                |                                               | d14:Up frequency command           |         |
|     |                                |                                               | d15:Down frequency command         |         |
|     |                                |                                               | d16:Run PLC Program                |         |
|     |                                |                                               | d17:Pause PLC Program              |         |
|     |                                |                                               | d18:External counter trigger input |         |
|     |                                |                                               | d19:Counter Reset                  |         |
|     |                                |                                               | d20:(not used)                     |         |
| 43  | Analog Meter                   | Selects frequency                             | d00: Analog frequency meter (0 to  | d00     |
|     | Output Select                  | or output current for                         | [maximum output frequency])        |         |
|     |                                | display on external                           | d01:Analog current meter (0-250%   |         |
|     |                                | analog meter                                  | of the rated drive output [A])     |         |
| 44  | Analog Output<br>Gain          | Analog output gain select                     | d01 - d200%                        | d100    |
| 45  | Multi-Function<br>Output TerM. | Multi-function out-<br>put term. 1 (MO1)      | d00:AC drive operational           | d00     |

Danfoss

| No. | Parameter                               | Function                                           | Parameter                                                                                                                                                                                                                                                                                                                                                                                                               | Factory |
|-----|-----------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|     | Name                                    | Explanation                                        | Value                                                                                                                                                                                                                                                                                                                                                                                                                   | Setting |
| 46  |                                         | Multi-function<br>RELAY output                     | d01:Pre-set frequency attained<br>d02:Non-zero speed<br>d03:Over-torque detection<br>d04:Baseblock indicator<br>d05:Low-voltage detect<br>d06:AC drive control mode<br>d07:Fault indicator<br>d08:Desired frequency attained<br>d09:PLC program running<br>d10:PLC program step complete<br>d11:PLC completed execution<br>d12:PLC execution paused<br>d13:Terminal counter reached<br>d14:Prelim counter value reached | d07     |
| 47  | Desired Freq.<br>Attained               | Desired frequency attained                         | d0.0 - d400.0 Hz                                                                                                                                                                                                                                                                                                                                                                                                        | d0.0    |
| 48  | Potentiometer<br>Control                | Potentiometer shift<br>of output frequency         | d0.0 - d350 Hz                                                                                                                                                                                                                                                                                                                                                                                                          | d0.0    |
| 49  |                                         | Potentiometer bias control                         | d00:Minimum output frequency<br>corresponds to potentiometer<br>at 0 V or 4 mA<br>d01:Initial output frequency set<br>with a potential bias point,<br>refer to Pr.50                                                                                                                                                                                                                                                    | d00     |
| 50  |                                         | Potentiometer out-<br>put freq. gain               | d01 - d200%                                                                                                                                                                                                                                                                                                                                                                                                             | d100    |
| 51  |                                         | Reverse motion<br>setting                          | d00:Forward motion only<br>d01:Reverse motion enabled                                                                                                                                                                                                                                                                                                                                                                   | d00     |
| 52  | Mtr. Operating Specifications           | Motor rated current                                | d30 - d120%                                                                                                                                                                                                                                                                                                                                                                                                             | d100    |
| 53  |                                         | Motor no-load                                      | d00 - d99%                                                                                                                                                                                                                                                                                                                                                                                                              | d40     |
| 54  | Torque Comp.<br>Setting                 | Auto torque compensation gain                      | d00 - d10                                                                                                                                                                                                                                                                                                                                                                                                               | d02     |
| 55  | Slip Comp.                              | Slip compensation                                  | d0.0 - d10.0                                                                                                                                                                                                                                                                                                                                                                                                            | d0.0    |
| 56  | Specific Output<br>Display              | Actual mtr. current<br>or DC Bus voltage           | d00:Display actual motor current<br>d01:Display DC Bus voltage                                                                                                                                                                                                                                                                                                                                                          | d00     |
| 57  | AC Drive Rated                          | Current Indicator                                  |                                                                                                                                                                                                                                                                                                                                                                                                                         | d##.#   |
| 58  | Electronic<br>Thermal<br>Overload Relay | Select motor<br>derating vs.<br>temperature curves | d00:Active with standard motor<br>d01:Active with special motor<br>d02:Inactive                                                                                                                                                                                                                                                                                                                                         | d02     |

Danfviss

| No. | Parameter<br>Name                      | Function<br>Explanation                                             | Parameter<br>Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Factory<br>Setting |
|-----|----------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 59  | Activation Time<br>Thermal Protect     | for Electronic                                                      | d30 - d300 sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d60                |
| 60  | Over-torque<br>Detection               | Over-torque<br>detection mode                                       | <ul> <li>d00:Over-torque detection not<br/>enabled</li> <li>d01:Over-torque detection during<br/>constant speed operation.</li> <li>Drive operation halted after<br/>over-torque (OL2).</li> <li>d02:Over-torque detection during<br/>constant speed operation.</li> <li>Operation continues after<br/>over-torque detection (OL2).</li> <li>d03:Over-torque detection during<br/>operation.</li> <li>Drive operation halted after<br/>over-torque (OL2).</li> <li>d04:Over-torque detection during<br/>operation.</li> <li>Operation continues after<br/>over-torque detection during<br/>operation.</li> <li>Operation continues after<br/>over-torque detection during</li> </ul> | d00                |
| 61  |                                        | Over-torque<br>detection level                                      | d30 - d200%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d150               |
| 62  |                                        | Over-torque<br>detection time                                       | d0.1 - d10.0 sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d0.1               |
| 63  | Reserved                               |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| 64  | User Defined<br>Parameter<br>Displayed | Displays user<br>defined parameter<br>on digital keypad/<br>display | <ul> <li>d00:Displays the drive output<br/>frequency (H)</li> <li>d01:Display user-define setting (V)</li> <li>d02:Display user-define setting (r)</li> <li>d03:Display user-define setting (L)</li> <li>d04:Display user-define setting (%)</li> <li>d05:Display the counter value (c)</li> <li>d06:Display the program freq. (F)</li> <li>d07:Display the par. setting (Pr.00)</li> <li>d08:Reserved</li> <li>d09:Displays motor current (A)</li> <li>d10:Displays Fwd/Rev mode</li> </ul>                                                                                                                                                                                         | d06                |
| 65  | Coefficient K                          | Coefficient for line<br>speed<br>select                             | d0.1 - d160.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d1.0               |

Danfoss

| No. | Parameter      | Function                        | Parameter                                         | Factory |
|-----|----------------|---------------------------------|---------------------------------------------------|---------|
|     | Name           | Explanation                     | Value                                             | Setting |
| 66  | Master Freq.   |                                 | d0.1 - 400 Hz                                     | d1.0    |
| 67  | Frequency      | Skip frequency 1                | d0.0 - d400. Hz                                   | d0.0    |
| 68  | Setting        | Skip frequency 2                | d0.0 - d400. Hz                                   | d0.00   |
| 69  | Prohibited     | Skip frequency 3                | d0.0 - d400. Hz                                   | d0.00   |
| 70  | Freq. Band-    | Skip freq. Band                 | d0.1 - d20.0 Hz                                   | d0.00   |
|     | width Setting  |                                 |                                                   |         |
|     | Prevention     |                                 |                                                   |         |
| 71  | PWM Carrier    | Carrier frequency               | d0.1 - d20.0 Hz                                   | d0.00   |
|     | Frequency      | select                          | d01 - d18; fc = 1kHz ~ 18kHz                      | d15     |
| 72  | Auto Reset/Res | start Oper. After Fault         | d00 - d10                                         | d00     |
| 73  | Fault Records  | Most recent fault               | d00: Fault records clear (No                      | d00     |
|     |                | record                          | errors occurred)                                  |         |
| 74  |                | 2nd most recent<br>fault record | d01: Over-current (oc)                            | d00     |
| 75  |                | 3rd most recent<br>fault record | d02: Over-voltage (ov)                            | d00     |
|     |                |                                 | d03: Overheat (oH)                                |         |
|     |                |                                 | d04: Overload (oL)                                |         |
|     |                |                                 | d05: Overload 1 (oL1)                             |         |
|     |                |                                 | d06:External fault (EF)                           |         |
|     |                |                                 | d07:CPU failure 1 (CF1)                           |         |
|     |                |                                 | d08: CPU failure 3 (CF3)                          |         |
|     |                |                                 | d09:Hardware protect failure (HPF)                |         |
|     |                |                                 | d10: O.C. during acceleration (oCA                | )       |
|     |                |                                 | d11: O.C. during deceleration (ocd)               |         |
|     |                |                                 | d12: O.C. during steady state (ocn)               |         |
|     |                |                                 | d13: Ground fault or fuse fail (GFF)              |         |
|     |                |                                 | d14:EEROM abnormal 2 (CF2)                        |         |
|     |                |                                 | d15: Manufacture used diagnostics                 |         |
|     |                |                                 | d16: Manufacture used diagnostics                 | i       |
|     |                |                                 | d17: External baseblock (bb)                      |         |
|     |                |                                 | d18: Overload 2 (oL2)                             |         |
|     |                |                                 | d19: Manufacture used diagnostics                 |         |
|     |                |                                 | d20: Soft protection efficient (codE)             |         |
| 76  | Key            | Key                             | d00: All parameters can always be                 | d00     |
|     | Parameter      | parameter                       | set and read                                      |         |
|     |                |                                 | d01: All parameters are read-only                 |         |
|     |                |                                 | d02 - d09: not used                               |         |
|     |                |                                 | d10:Resets all parameters to the factory defaults |         |
| 77  | Auto Decel.    | Auto deceleration               | d00: Auto deceleration gain key                   | d00     |
|     | Gain Key       | gain key                        | d01: Able to adjust the gain value                |         |

Danfoss

| No.  | Parameter                             | Function                                                 | Parameter                                                                                                                                                                                      | Factory |
|------|---------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|      | Name                                  | Explanation                                              | Value                                                                                                                                                                                          | Setting |
| 78   | PLC<br>Operation<br>Mode              | PLC (programmable<br>logic controller)<br>operation mode | d00:Disable PLC performing<br>d01:Execute cycle of PLC program<br>d02:Continuously execute cycles<br>d03:Execute cycle step-by-step<br>d04:Continuously execute program<br>cycles step-by-step | d00     |
| 79   | PLC Fwd/Rev<br>Control                | PLC fwd/rev<br>control                                   | d00 - d127                                                                                                                                                                                     | d00     |
| 80   | Manufacturer I                        | nformation                                               | d00:220V 1Ø/3Ø, 0.5 Hp<br>d02:220V 1Ø/3Ø, 1.0 Hp<br>d04:220V 1Ø/3Ø, 2.0 Hp                                                                                                                     | d##     |
| 81   | PLC Program                           | Timing for step 1                                        | d0.0 - d650                                                                                                                                                                                    | d0.0    |
| 82   | Step Time                             | Timing for step 2                                        | d0.0 - d650                                                                                                                                                                                    | d0.0    |
| 83   | Intervals                             | Timing for step 3                                        | d0.0 - d650                                                                                                                                                                                    | d0.0    |
| 84   |                                       | Timing for step 4                                        | d0.0 - d650                                                                                                                                                                                    | d0.0    |
| 85   |                                       | Timing for step 5                                        | d0.0 - d650                                                                                                                                                                                    | d0.0    |
| 86   |                                       | Timing for step 6                                        | d0.0 - d650                                                                                                                                                                                    | d0.0    |
| 87   |                                       | Timing for step 7                                        | d0.0 - d650                                                                                                                                                                                    | d0.0    |
| 88-9 | 4 Serial Commu                        | inication (See Append                                    | ·                                                                                                                                                                                              |         |
| 95   | Auto Energy-<br>saving                | Auto Energy-saving                                       | d00:Without energy-saving operation d01:With energy-saving operation                                                                                                                           | d00     |
| 96   | Count Down<br>Completion              | Count down value setting                                 | d00 ~ d999                                                                                                                                                                                     | d00     |
| 97   | Preset Count<br>Down Compl.           | Preset count-down                                        | d00 ~ d999                                                                                                                                                                                     | d00     |
| 00 0 | 99 Reserved                           |                                                          |                                                                                                                                                                                                |         |
|      | Software version                      | 20                                                       | Read only                                                                                                                                                                                      | d1.06   |
|      |                                       |                                                          | -                                                                                                                                                                                              |         |
| 101  | Auto Accel/<br>Decel<br>Adjustment    | Auto acceleration/<br>deceleration<br>adjustment select  | d00:Linear accel., decel.<br>d01:Auto accel., linear decel.<br>d02:Linear accel., auto decel.<br>d03: Auto accel./decel.                                                                       | d00     |
| 102  | Auto Voltage<br>Regulation            | Auto voltage<br>regulation                               | d00:Enable auto voltage reg.<br>d01:Disable auto voltage reg.<br>d02:Disable auto volt reg. w/stop<br>d03:Disable auto volt reg. w/decel                                                       | d03     |
| 103- | 110 Reserved                          |                                                          |                                                                                                                                                                                                |         |
| 111  | Decel S-curve<br>Setting              |                                                          | d00 ~ d7                                                                                                                                                                                       | d00     |
| 112  | Ext. Term<br>Scanning time<br>Setting |                                                          | d00 ~ d20                                                                                                                                                                                      | d00     |

Danfoss

### Chapter 6

#### **Troubleshooting and Fault Information**

The AC motor drive has a comprehensive fault diagnosis system that includes more than 20 different alarms and fault messages. Once a fault is detected, the corresponding protective functions will be activated to turn off the AC drive output. The different AC motor drive failures may be classified as follows:

- Over Voltage / Low Voltage
- Heatsink Over Temperature
- Motor Overload
- AC motor drive Overload
- Motor Stalled
- Microprocessor Systems Failure

The three most recent faults are stored in the AC drive non-volatile memory and may be read through the digital control panel, or through the RS-485 interface on the control board.

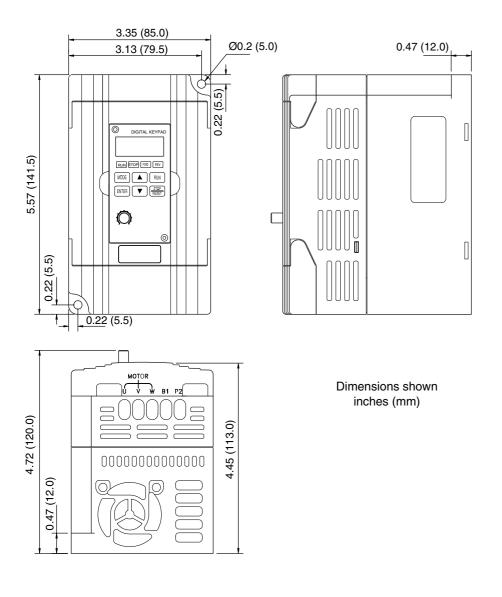
This section provides information to guide the user in understanding the AC drive fault conditions and the related general troubleshooting procedures. A listing and description of the AC drive failures is given, along with their possible solutions. A section on general troubleshooting is also included for reference.

Important: Pressing the Reset button will not restore the AC drive to its normal operating conditions unless the fault is corrected. During any failure, the AC drive switches off and an error message will appear in the display. The last error that occurred is stored in Pr.73.

Danfviss

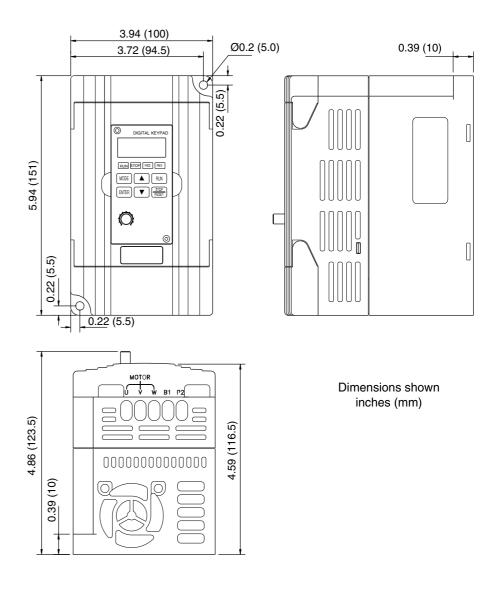
| Possible Faults                                                                                                                                                      | Corrective Actions                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>o.c.</b> The over-current hardware trip circuit detects an abnormal increase in current.                                                                          | Check the motor output power to insure it<br>corresponds to the AC drive output power.<br>Check wiring connections between the AC drive<br>and motor for possible short circuits.<br>Increase Acceleration time 1 and 2 (Pr.10, 12).<br>Check for possible excessive loading conditions<br>on the motor.                                                                                                                |
| <b>o.u.</b> The AC drive detects that the internal DC bus voltage has exceeded its maximum allowable value.                                                          | Check the AC line voltage to insure it falls within<br>the rated AC drive input voltage. Check for<br>possible voltage transients.<br>Bus over-voltage could also be caused by motor<br>regeneration. Either increase the Deceleration<br>time or add an optional braking resistor. If a<br>braking resistor is added, check to insure the<br>required braking power is within the specified<br>limits of the resistor. |
| <b>o.H.</b> The AC drive temperature sensor detects excessive heat.                                                                                                  | Ensure that the ambient temperature falls within<br>the specified temperature range.<br>Check ventilation holes to insure they are not<br>obstructed.<br>Remove any foreign objects on the heatsinks<br>and check for possible dirty heatsink fins.<br>Provide enough spacing for adequate ventilation.                                                                                                                 |
| <b>L.u.</b> The AC drive detects that the internal DC bus voltage has fallen below its min. value.                                                                   | Check the AC line voltage to insure it falls within the rated AC drive input voltage.                                                                                                                                                                                                                                                                                                                                   |
| <b>o.L.</b> The AC motor drive detects excessive drive output current. The AC motor drive can withstand up to 150% of the rated current for a maximum of 60 seconds. | Check for motor overloaded.<br>Reduce the Torque compensation setting (Pr.54).<br>Increase the AC drive output capacity<br>(Pr.25 - 27).                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                         |

Danfoss


| Possible Faults                                                                                                                                                                                                                                 | Corrective Actions                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>o.L.I</b> Internal electronic overload trip:<br>Motor is overloaded.<br>Reduce the current level so that the drive output current does not exceed the value set by the [Motor rated current] Pr52.                                           | Check for possible motor overload.<br>Check electronic thermal overload settings<br>(Pr.58, 59).<br>Increase motor capacity.                                                                                                        |
| <b>o.L.2</b> Motor overload (Pr.60 - 62)                                                                                                                                                                                                        | Reduce the motor load.<br>Adjust the over-torque detection setting to an<br>appropriate setting.                                                                                                                                    |
| <ul> <li><b>o.c.A.</b> Over-current during acceleration:</li> <li>1. Short-circuit at motor output</li> <li>2. Torque boost too high.</li> <li>3. Acceleration time too short.</li> <li>4. AC motor drive output capacity too small.</li> </ul> | <ol> <li>Check for possible poor insulation at the<br/>output line.</li> <li>Decrease the torque boost setting in Pr.54.</li> <li>Increase the acceleration time.</li> <li>Replace AC drive with higher output capacity.</li> </ol> |
| <b>o.c.d.</b> Over-current during deceleration:<br>1. Short-circuit at motor output<br>2. Deceleration time too short.<br>3. AC drive output capacity too small.                                                                                | <ol> <li>Check for possible poor insulation at the<br/>output line.</li> <li>Increase the deceleration time.</li> <li>Replace with an AC drive with higher output<br/>capacity.</li> </ol>                                          |
| <ul> <li><b>o.c.n.</b> Over-current during steady state operation:</li> <li>1. Short-circuit at motor output</li> <li>2. Sudden increase in motor loading.</li> <li>3. AC motor drive output capacity too small.</li> </ul>                     | <ol> <li>Check for possible poor insulation at the<br/>output line.</li> <li>Check for possible motor binding.</li> <li>Replace AC drive with higher output capacity.</li> </ol>                                                    |
| <b>E.F.</b> External terminal EF-DCM goes from ON to OFF.                                                                                                                                                                                       | External fault.                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |

Danfviss

| Possible Faults                                                                                                                                                                                                                                                                                                                                        | Corrective Actions                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>c.F.I</b> AC motor drive internal circuitry failure.                                                                                                                                                                                                                                                                                                | <ol> <li>Switch off power supply.</li> <li>Check the AC line voltage to insure it falls<br/>within the rated AC drive input voltage.</li> <li>Switch power to the AC drive back on.</li> </ol>                          |
| <b>c.F.2</b> AC motor drive E2PROM contains invalid data or can not be programmed.                                                                                                                                                                                                                                                                     | Check the connections between the main<br>control board and the power board.<br>Reset drive to factory defaults (refer to Pr.76).                                                                                       |
| <b>c.F.3</b> Internal drive internal circuitry abnormal.                                                                                                                                                                                                                                                                                               | Switch off power supply. Check the AC line voltage to insure it falls within the rated AC drive input voltage. Switch power back on.                                                                                    |
| <b>G.F.F.</b> Ground fault or fuse failure:<br>Ground fault :<br>The AC drive output is abnormal.<br>When the output terminal are<br>grounded (short circuit current is<br>50% higher than the AC drive rated<br>current), the AC drive power module<br>may be damaged. The short circuit<br>protection is provided for the AC<br>drive, not the user. | <ul><li>Ground fault :</li><li>1. Check the IGBT power module for damage.</li><li>2. Check for possible poor conductor insulation<br/>on the output lines.</li></ul>                                                    |
| Fuse failure:<br>A fuse failure will be displayed by the<br>LED on the power board.                                                                                                                                                                                                                                                                    | Fuse failure:<br>1. Replace Fuse.<br>2. Check the IGBT power module for damage.<br>3. Check for possible poor insulation at the<br>output line.                                                                         |
| <b>b.b.</b> External baseblock.<br>AC drive output is turned off.                                                                                                                                                                                                                                                                                      | When the multi-function input 1 (2, 3)-DCM terminal goes from OFF to ON, the AC drive output will be turned off.                                                                                                        |
| <b>c.F.A</b> Auto acceleration/decel-<br>eration adjustment mode fault                                                                                                                                                                                                                                                                                 | Check the motor output power to insure it<br>corresponds to the AC drive output power.<br>Check the AC line voltage to insure it falls within<br>the rated AC drive input voltage.<br>Sudden increase in motor loading. |
|                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                         |

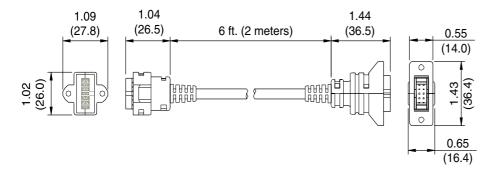

Danfoss

## Appendix A Dimensions 200-240V Series



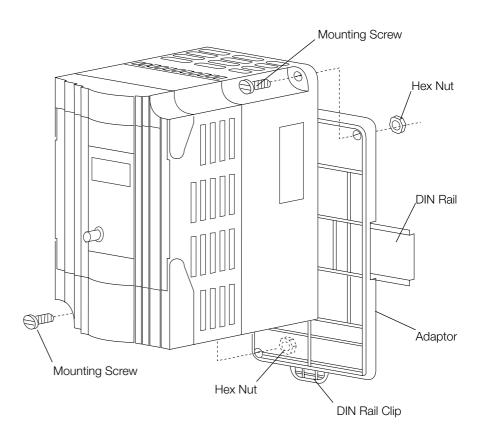
Danfoss

## **Dimensions 200-240V CE Series**




Danfoss

## Appendix B Accessories


| Remote Keypad Kit: 6 ft. (2 meter)                                                                                                                                                                                                      | 176F7310                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 15 ft. (5 meter)                                                                                                                                                                                                                        | 176F7325                                                                                                 |
| DIN Rail Adapter Bracket Kit:<br>200-240V, single and three phase<br>200-240V, single phase<br>200-240V single or three phase C                                                                                                         | 176F7311<br>176F7315                                                                                     |
| 200-240 VAC<br>Brake Resistors:<br>0.5 HP 30% Duty Cycle<br>0.5 HP 40% Duty Cycle<br>0.75HP 20% Duty Cycle<br>1.0 HP 14% Duty Cycle<br>1.0 HP 30% Duty Cycle<br>1.0 HP 40% Duty Cycle<br>2.0 HP 15% Duty Cycle<br>2.0 HP 40% Duty Cycle | 175U1003<br>175U0900<br>175U1004<br>175U0901<br>175U1005<br>175U0989<br>175U0902<br>175U0992<br>175U0903 |
| Emc Filter: 200-240V, 1Ø                                                                                                                                                                                                                | 176F7328                                                                                                 |
| 200-240V, 3Ø                                                                                                                                                                                                                            | 176F7327                                                                                                 |

## Remote Keypad Kit 6 ft. (2 meter) 176F7310 15 ft. (5 meter) 176F7325



Danfoss

DIN Rail Adaptor Bracket Kit : 200-240V versions 176F7311 200-240V CE versions 176F7315



Danfoss

## <u>Appendix C</u> CE Labeling

## What is CE Labeling?

The purpose of CE labeling is to avoid technical obstacles to trade within EFTA and the EU. The EU has introduced the CE label as a simple way of showing whether a product complies with the relevant EU directives. The CE label says nothing about the specifications or quality of the product. Adjustable frequency drives are regulated by three EU directives:

## The Machinery Directive (89/392/EEC)

All machines with critical moving parts are covered by the machinery directive, which came into force on 1 January 1995. Since an adjustable frequency drive is largely electrical, it does not fall under the machinery directive. However, if an adjustable frequency drive is supplied for use in a machine, we provide information on safety aspects relating to the VLT adjustable frequency drive. We do this by means of a manufacturer's declaration.

### The Low-voltage Directive (72/23/EEC)

Adjustable frequency drives must be CE labelled in accordance with the low-voltage directive. The directive applies to all electrical equipment and appliances used in the voltage range of 50-1000 VAC and 75-1500 VDC.

#### The EMC Directive (89/336/EEC)

EMC is short for electromagnetic compatibility. The presence of electromagnetic compatibility means that the mutual interference between different components/ appliances is so small that the functioning of the appliances is not affected. The EMC directive came into force on 1 January 1996. The directive distinguishes between components, appliances, systems and installations.

#### What is Covered?

The EU "Guidelines on the application of Council Directive 89/336/EEC" outline three typical situations of using an adjustable frequency drive. For each of these situations, explanations are offered as to whether the situation in question is covered by the EMC directive and must be CE labelled.

1. The adjustable frequency drive is sold directly to the end-consumer. The adjustable frequency drive is for example sold to a DIY market. The end-consumer is a layman. He installs the adjustable frequency drive himself for use with a hobby machine, a kitchen appliance, etc. For such applications, the VLT adjustable frequency drive must be CE labeled in accordance with the EMC directive.

2. The adjustable frequency drive is sold directly to an installation site. That could be, for example, a production facility or a heating/ventilation plant designed and installed by professionals of the trade. Neither the adjustable frequency drive nor the completed installation has to be CE labelled under the EMC directive. However, the unit must

comply with the basic EMC requirements of the directive. The installer can ensure this by using components, appliances and systems that are CE labeled under the EMC directive.

Danfoss

3. The adjustable frequency drive is sold as part of a complete system. The system is being marketed as complete. It could be, for example, an air-conditioning system. The complete system must be CE labeled in accordance with the EMC directive. The manufacturer who supplies the system can ensure CE labeling under the EMC directive either by using CE labeled components or by testing the EMC of the system. If he chooses to use only CE labeled components, he does not have to test the entire system.

#### **Danfoss VLT Adjustable Frequency Drive and CE Labeling**

CE labeling is a positive feature when used for its original purpose, i.e. to facilitate trade within the EU and EFTA.

However, CE labeling may cover many different specifications. This means that it has to be checked as to what a given CE label specifically covers.

The specifications covered can in fact be widely different. That is why a CE label can give the installer a false feeling of security when using an adjustable frequency drive as a component in a system or an appliance.

We CE label our VLT adjustable frequency drives in accordance with the low-voltage directive. This means that as long as the VLT adjustable frequency drive is installed correctly, we guarantee that it complies with the low-voltage directive. We issue a declaration of conformity that confirms our CE labeling in accordance with the low voltage directive.

The CE label also applies to the EMC directive, on condition that the instructions given in the operating instructions for EMC-correct installation and filtering have been followed. On the basis, a declaration of conformity in accordance with the EMC directive is issued.

The operating instructions give detailed instructions for installation to ensure that your installation is EMC-correct. Furthermore, we specify which norms that are complied with by our different products.

We offer the filters that can be seen from the specifications and gladly provide other types of assistance that can help you obtain the best EMC result.

#### Compliance with EMC directive 89/336/EEC

In the great majority of cases, the VLT adjustable frequency drive is used by professionals of the trade as a complex component forming a larger appliance, system or installation. It must be noted that the responsibility for the final EMC properties of the appliance, system or installation rests with the installer. As a aid to the installer, Danfoss has prepared EMC installation guidelines for the Power Drive System. The standards and test levels stated for Power Drive Systems are complied with, provided the right EMC-correct instructions for installation have been followed.

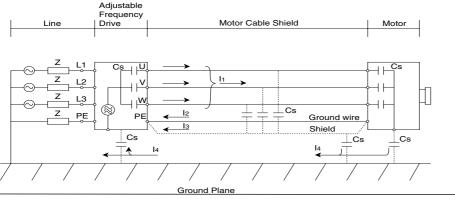
Danfoss

#### **General Aspects of EMC Emissions**

Electrical interference at frequencies in the range 150 kHz to 30 MHz are cableborne. Airborne interference from the drive system in the range 30 MHz to 1 GHz is generated from the inverter, the motor cable and the motor.

As the drawing below shows, capacitive currents in the motor cable together with a high dV/dt from the motor voltage generate leakage currents.

The use of a shielded motor cable increases the leakage current (see drawing). This is because shielded cables have higher capacitance to ground than unshielded cables. If the leakage current is not filtered, it will cause greater interference on the AC line in the radio frequency range below approximately 5 MHz. Since the leakage current ( $I_1$ ) is carried back to the unit through the shield ( $I_3$ ), there will in principle only be a small electro-magnetic field ( $I_4$ ) from the shielded motor cable according to the drawing below.


The shield reduces the radiated interference, but increases the low-frequency interference on the AC line. The motor cable shield must be connected to the VLT enclosure. The best way of doing this is by using integrated shield clamps so as to avoid twisted shield ends (pigtails). If pigtails are used, make them as short and direct as possible.

In the cases when the shield is to be placed on a mounting plate for the VLT adjustable frequency drive, the shield currents are to be conveyed back to the unit. It is also important to ensure good electrical contact from the mounting plate through the mounting screws to the VLT adjustable frequency drive chassis. With respect to installation, it is generally less complicated to use unshielded cables

than shielded ones.

NOTE: When shielded cables are used some emission requirements are not complied with, although the immunity requirements are complied with.

In order to reduce the interference level from the system overall (unit + installation) as far as possible, it is important to make motor and brake cables as short as possible. Cables with a sensitive signal level must not be alongside motor and brake cables. Radio interference higher than 50 MHz (airborne) will be generated especially by the control electronics.



Danfoss

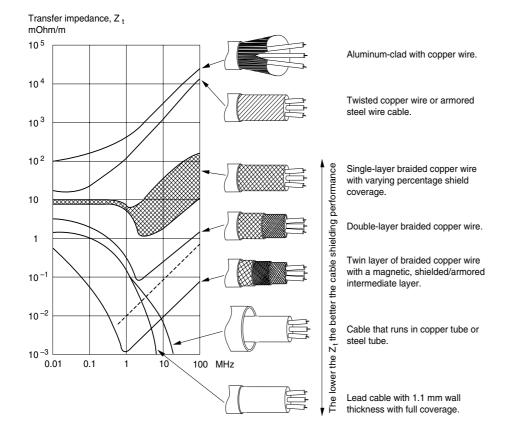
## **EMC-correct Electrical Installation**

General points to be observed to ensure EMC-correct electrical installation:

- Use only shielded motor cables and shielded control cables.
  - NOTE: Suggested shielded cable type, like that supplied by Southwire.
- Connect the shield to ground at both ends.

- PG Cable Glands, of the type shown below, are recommended. Avoid installation with twisted shield ends (pigtails), since this ruins the shielding effect at high frequencies.

- NOTE: Suggested cable gland, "Jacob PG", supplied by ALTECH.
- It is important to ensure good electrical contact from the installation plate through the installation screws to the metal cabinet of the VLT adjustable frequency drive.
- Use toothed washers and galvanically conductive installation plates.
- DO NOT use unshielded motor cables in the installation panels.


The installer is responsible for the final EMC properties and compliance with the Low Voltage Directive for the installation.

#### **Use of EMC-correct cables**

Shielded/armored cables are recommended to optimize EMC immunity of the control cables and the EMC emission from the motor cables. The ability of a cable to reduce the in- and outgoing radiation of electric noise depends on the transfer impedance ( $Z_{\tau}$ ). The shield of a cable is normally designed to reduce the transfer of electric noise; however, a shield with a lower  $Z_{\tau}$  value is more effective than a shield with a higher  $Z_{\tau}$ .  $Z_{\tau}$  is rarely stated by cable manufacturers, but it is often possible to estimate  $Z_{\tau}$  by assessing the physical design of the cable.  $Z_{\tau}$  can be assessed on the basis of the following factors:

- The conductibility of the shield material.
- The contact resistance between the individual shield conductors.
- The shield coverage, i.e. the physical area of the cable covered by the shield often stated as a percentage value.
- Shield type, i.e. braided or twisted pattern.

Danfoss



Danfoss

## <u>Appendix D</u> Serial Communication

## Pr.88 Communication Address

Factory Setting d1

Settings d1 to 254

This parameter can be set during operation.

If the AC drive is controlled by RS-485 serial communication, the communication address must be set via this parameter.

### Pr.89 Transmission Speed

Factory Setting d1

Settings

d0 Baud rate 4800 (data transmission: bits / second)

- d1 Baud rate 9600 (data transmission: bits / second)
- d2 Baud rate 19200 (data transmission: bits / second)
- d3 Baud rate 38400 (data transmission: bits / second)

This parameter can be set during operation.

Users can set parameters and control the operation of the AC drive via the RS-485 serial interface of a personal computer. This parameter is used to set the transmission speed between the computer and AC drive.

### Pr.90 Transmission Fault Treatment

Factory Setting d0

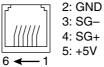
- Settings d0 Warn and keep operating
  - d1 Warn and stop by RAMP
  - d2 Warn and stop by COAST

### Pr.91 Over Time Detection

Factory Setting d0

- Settings d0 No detection
  - d1 Over Time enable

#### Pr.92 Communication Protocol


| Factory S    | etting d0 |   |
|--------------|-----------|---|
| Settings     | d0 7,N,2  |   |
|              | d1 7,E,1  |   |
|              | d2 7.0,1  |   |
|              | d3 8,N,2  |   |
|              | d4 8,E,1  |   |
|              | d5 8,0,1  |   |
| This is such |           | _ |

This parameter can be set during operation.

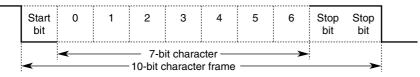
Danfoss

## **1 Computer Control**

• There is abuilt-in RS-485 serial interface, marked (RJ-11) on the control card. The pins are defined below:



Each VLT MICRO drive has a pre-assigned communication address specified by Pr.88. The computer then controls each AC drive according to its communication address.


- The VLT micro can be setup to communicate on Modbus networks using one of the following modes: ASCII (American Standard Code for Information Interchange). Users can select the desired mode along with the serial port communication protocol in Pr.92.
- Code Meaning:
- ASCII mode:

Each 8-bit data is the combination of two ASCII characters. For example, a 1-byte data: 64 Hex, shown as "64" in ASCII, consists of "6" (36Hex) and "4" (34Hex).

## 2 Data Format

2.1 10-bit character frame (For 7-bit character):

• (7, N, 2: Pr.92 = 0)



Danfoss • (7, E, 1: Pr.92 = 1)

| Start<br>bit | 0                 | 1 | 2 | 3 | 4 | 5 | 6 | Even<br>parity | Stop<br>bit |
|--------------|-------------------|---|---|---|---|---|---|----------------|-------------|
| <──          | 7-bit character > |   |   |   |   |   |   |                |             |

• (7, 0, 1: Pr.92 = 2)

| Start<br>bit      | 0 | 1 | 2 | 3 | 4 | 5 | 6 | Odd<br>parity | Stop<br>bit |
|-------------------|---|---|---|---|---|---|---|---------------|-------------|
| 7-bit character > |   |   |   |   |   |   |   |               |             |

• (8, N, 2: Pr.92 = 3)

| Start<br>bit        | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Stop<br>bit | Stop<br>bit |
|---------------------|---|---|---|---|---|---|---|---|-------------|-------------|
| 8-bit character — > |   |   |   |   |   |   |   |   |             |             |

• (8, E, 1: Pr.92 = 4)

| Start<br>bit        | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Even<br>parity | Stop<br>bit |
|---------------------|---|---|---|---|---|---|---|---|----------------|-------------|
| 8-bit character — > |   |   |   |   |   |   |   |   |                |             |

Danfvis

| • ( | 8, O, | 1:F | <sup>2</sup> r.92 | = 5) |
|-----|-------|-----|-------------------|------|
|-----|-------|-----|-------------------|------|

|   | Start<br>bit      | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Odd<br>parity | Stop<br>bit |
|---|-------------------|---|---|---|---|---|---|---|---|---------------|-------------|
| • | 8-bit character > |   |   |   |   |   |   |   |   |               |             |

## **3 Communication Protocol**

3.1 Communication Data Frame:

| STX | ADR | ADR  | CMD | CMD | 0               | 1 |  | N-1 | Ν | ETX | CHK   | CHK |
|-----|-----|------|-----|-----|-----------------|---|--|-----|---|-----|-------|-----|
|     | 1   | 0    | 1   | 0   |                 |   |  |     |   |     | 1     | 0   |
| 02H | Add | ress | CMD |     | Data Characters |   |  |     |   | 03H | Check | Sum |

## 3.2 ASCII mode:

| STX        | Start character: (02H)                                            |
|------------|-------------------------------------------------------------------|
| ADR 1      |                                                                   |
| ADR 0      | Communication address:<br>8-bit address consists of 2 ASCII codes |
| CMD 1      |                                                                   |
| CMD 0      |                                                                   |
| DATA 0     |                                                                   |
| DATA 1     | Contents of data:                                                 |
| DATA (n-1) | n x 8-bit data consist of 2n ASCII codes                          |
|            | n 25 maximum of 50 ASCII codes                                    |
| N          |                                                                   |
| EXT        | End characters:<br>ASCII = 03 Hex                                 |
| LRC CHK 1  | LRC check sum:                                                    |
| LRC CHK 0  | 8-bit check sum consists of 2 ASCII codes                         |

Danfoss

3.3 ADR (1, 0)

| 00: Broadcast to all AC drives | $\iff$            | ARD1 = 30Hex, ADR0 = 30Hex |
|--------------------------------|-------------------|----------------------------|
| 01: To AC drive at Address 01  | $\Leftrightarrow$ | ARD1 = 30Hex, ADR0 = 31Hex |
| 0F: to AC drive at Address 0F  | $\Leftrightarrow$ | ARD1 = 30Hex, ADR0 = 46Hex |
| 10: To AC drive at Address 10  | $\Leftrightarrow$ | ARD1 = 31Hex, ARD0 = 30Hex |
| Maximum is 254, at Address FE  |                   |                            |

3.4 CMD (1, 0)

| CMD0: |                                 |
|-------|---------------------------------|
| "0"   | 30Hex: Stop                     |
| "1"   | 31Hex: FWD + RUN                |
| "2"   | 32Hex: REV + RUN                |
| "3"   | 33Hex: JOG + FWD + RUN          |
| "4"   | 34Hex: JOG + REV + RUN          |
| "5"   | 35Hex: E.F. ON (External Fault) |
| "6"   | 36Hex: Reset                    |
| "7"   | 37Hex: Write Parameter          |
| "8"   | 38Hex: Read Parameter           |
| "9"   | 39Hex: Read Inverter Status     |
| "A"   | 41Hex: Reserved                 |
| "B"   | 42Hex: Reserved                 |
| "C"   | 43Hex: Reserved                 |
| "D"   | 44Hex: Reserved                 |
| "E"   | 45Hex: Reserved                 |
| "F"   | 46Hex: Reserved                 |
|       |                                 |

CMD1:

- $Bit 0 = 0 \quad No \text{ Mirror Telegram} \\ Bit 0 = 1 \quad Mirror Telegram \\ Bit 2 = 1 \quad When \text{ Bit } 2 = 1, \text{ Means CEXX; clear with RESET command}$

Danfoss

### 3.5 Data characters

Giving the data format according to the request of communication interface. For example, reading address 01 as Pr.04 of AC drive. "0 & 4" are the data format.

| STX | ADR<br>1   | ADR<br>0   | CMD<br>1   | CMD<br>0   | 0                      | 1 |  | N-1 | N | ETX | CHK<br>1   | CHK<br>0   |
|-----|------------|------------|------------|------------|------------------------|---|--|-----|---|-----|------------|------------|
| 02H | 30H<br>"0" | 31H<br>"1" | 30H<br>"0" | 38H<br>"8" | 30H , 34H<br>"0" , "4" |   |  |     |   | 03H | 33H<br>"3" | 30H<br>"0" |

## 3.6 Chk (1,0)

Check Sum is calculated by summing up ADR to ET. For Example, reading address 01 as Pr.04 of AC drive.

| STX | ADR<br>1   | ADR<br>0   | CMD<br>1   | CMD<br>0   | 0                      | 1 |  | N-1 | N   | ETX        | CHK<br>1   | CHK<br>0 |
|-----|------------|------------|------------|------------|------------------------|---|--|-----|-----|------------|------------|----------|
| 02H | 30H<br>"0" | 31H<br>"1" | 30H<br>"0" | 38H<br>"8" | 30H , 34H<br>"0" , "4" |   |  |     | 03H | 33H<br>"3" | 30H<br>"0" |          |

30H + 31H + 30H + 38H + 30H + 34H + 03H = 1<u>30</u>H

### 4 AC Drive Responding Mode:

- 4.1 When CMD1 is Mirror Telegram, AC drive will respond to the original command.
- 4.2 When CMD0 is Read Parameter, AC drive will respond. STX(02H) + ADR(1,0) + CMD(1,0) + 8 Data Characters + EXT + CHK(1,0)

8 Data Characters:

- 2 ASCII characters as parameter.
- 2 ASCII characters as parameter number.
- 4 ASCII characters as parameter setting value.
- 4.3 When CMD0 is Read Inverter Status, AC drive will respond. STX(02H) + ADR(1,0) + CMD(1,0) + 34 Data Characters + EXT + CHK(1,0)

Danfoss

34 Data Characters:

- 2 ASCII characters as Error Code
- 2 ASCII characters as LED
- 4 ASCII characters as frequency command (FXX.XX)
- 4 ASCII characters as output frequency (HXX.XX)
- 4 ASCII characters as output current (AXX.XX)
- 4 ASCII characters as DC-BUS voltage
- 4 ASCII characters as output voltage
- 2 ASCII characters as multi-step speed
- 4 ASCII characters as operational time
- 4 ASCII characters as counter value

#### **5 AC Drive Communication Error:**

The AC drive receives the messages, but detect a communication error, thus no response is returned. But there will be an error message "CExx" displayed on the keypad. The master device will eventually process a time out condition. The "xx" of CExx" is a decimal code, the meaning of the error message is as follows:

| Error Message | Meaning                                                                                                                                                                                                                                          |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 0         | IC 75176 or CPU communication port damaged                                                                                                                                                                                                       |
| bit 1         | Data out of range (check whether the input data are out of range)                                                                                                                                                                                |
| bit 2         | Character Frame Error (check whether the Baud rates comply with data frame)                                                                                                                                                                      |
| bit 3         | Check Sum Error (make sure the Check Sum is correct)                                                                                                                                                                                             |
| bit 4         | Transmission Time Out                                                                                                                                                                                                                            |
| bit 5         | Transmission Bus Error (The time interval between commands is too short.) Please keep an interval of 10 ms at least after the return of a command. If there is no command returned, also keep an interval of at least 10 ms for the same reason. |
| bit 6         | Reserved                                                                                                                                                                                                                                         |
| bit 7         | Reserved                                                                                                                                                                                                                                         |